[スポンサーリンク]

化学者のつぶやき

アルケンでCatellani反応: 長年解決されなかった副反応を制御した

[スポンサーリンク]

アルケンに対するCatellani反応が開発された。構造改変したノルボルネンを用いることで副反応のシクロプロパン化が抑制され、四置換オレフィンを効率的に合成することができる。

Catellani反応とシクロプロパン化

Catellani反応は、パラジウム触媒とNBE(ノルボルネン)を併用することでハロアレーンのオルト位とイプソ位を一挙に二官能基化できる優れた手法として知られる(図1A)[1]。この反応は、ハロアレーンのパラジウムへの酸化的付加、続くNBEとのカルボパラデーションを経てパラダサイクルAを形成することが鍵である。本反応を同様にC(sp2)–ハロゲン結合をもつハロアルケンに対して適用できれば、複雑な多置換アルケンが短工程で合成できる有用な手法となりうる。

しかし、ハロアルケンをCatellani反応に用いるとシクロプロパン化が進行し、目的の化合物が得られないことがわかっている(図1B)[2]。この問題はCatellani反応が最初に報告されてから20年以上解決されていない。アルケンは芳香族化合物に比べπ結合の反応性が高く、アルケニルノルボルニル中間体Bからの3-exo-trig環化反応が進行するためである。アルケニルCatellani反応の実現に際し、中間体B(もしくはC)からの3-exo-trig反応の抑制と、Bの望みのC–Hメタル化、及び中間体Cにおけるβ炭素脱離反応の促進が重要となる。
今回シカゴ大学のDong教授らは、長年の課題であったアルケニルCatellani反応を開発した(図1C)。構造改変した置換ノルボルネンによるシクロプロパン化の抑制や、2-ヒドロキシ5-トリフルオロメチルピリジン(5-CF3-Py-2-OH)助触媒の使用によるC–Hメタル化の促進が成功の鍵である[3][4]。容易に入手できるアルケニルトリフラートまたはブロモアルケンから位置選択的な多置換アルケンの合成が可能となった。

図1 A. 一般的なCatellani反応 B. アルケンに対するCatellani反応の適用(望まぬシクロプロパン化が進行する) C. 今回の反応

“Modular and regioselective synthesis of all-carbon tetrasubstituted olefins enabled by an alkenyl Catellani reaction”
Wang, J.; Dong, Z.; Yang, C.; Dong, G. Nat. Chem., 2019, 11, 1106–1112
DOI: 10.1038/s41557-019-0358-y

研究者:Guangbin Dong (董广彬)
研究者の経歴:
1999–2003 BSc, in Chemistry, Peking University, Beijing, China (Prof. Z. Yang)
2004–2009 Ph.D. in Chemistry, Stanford University, Stanford, California (Prof. B. M. Trost)

2009–2011 Camile and Henry Dreyfuns Postdoctral Fellow, California Institute of Technology (Prof. R. H. Grubbs)
2011–2016 Assistant Professor, CPRIT Scholar for Cancer Research, University of Texas at Austin
2016– Professor of Chemistry, The University of Chicago
研究内容:C–H/C–C結合活性化反応、金属触媒開発、 創薬化学、グラフェンナノリボンの合成

論文の概要

本手法ではPd(cod)Cl2/L1触媒に構造改変により独自に合成したNBE(N1)、さらに5-CF3-Py-2-OHを助触媒とし、炭酸セシウム存在下アルケニルトリフラート1とヨードアルカン2、オレフィン3を反応させることで四置換アルケン4が得られる(図2A)。5-CF3-Py-2-OHはパラダサイクル中間体のC–Hメタル化を促進していると考えられている。本反応の収率は、使用するNBE助触媒や配位子に非常に敏感である。例えば、N1のかわりにC2位がシアノ(N2)やエステル(N3)で置換されたNBEやC5位にアミドをもつNBE(N4)では4の収率が大幅に低下し、シクロプロパン化が併発した(詳細は論文参照)。また、配位子はビアリールジフェニルホスフィン(L1, L2)が本反応に有効であるのに対し、ジアルキルホスフィン(L3)や、2,6-ジメトキシビアリールジフェニルホスフィン(L4)では収率が大幅に低下する。本反応では、環状、非環状ハロアルケンに対し様々なハロアルカン2やオレフィン3を反応させることができる(4a–c)。さらに、ヨードアルカンの代わりにブロモアレーン2dや、オレフィン3の代わりにボロン酸3eを用いることも可能であり、それぞれ対応するカップリング体4d, 4eが得られる。
本反応を精査したところ、ビアリールジフェニルホスフィン配位子L1, L2を用いた際、これらの化合物由来のジベンゾホスホールオキシドが生成することがわかった(図2C)。この結果から、本反応の活性な配位子は、系中で生成するL5L6であると想定した。そこで、L2およびL6を用いた速度論実験を行った結果、L2を用いた場合にのみ反応誘導段階が観測され、両配位子をもちいた際の反応速度がほぼ同じであることが確認された。以上から、反応系中ではL5L6が活性な配位子として働いていると推察される。

図, 2. A. 最適条件 及びノルボルネンと配位子の検討 B.基質適用範囲 C. 反応機構解明実験

以上、初のハロアルケンに対するCatellani反応が開発された。単純なアルケニルトリフラートやハロアルケンを速やかに複雑化合物へ誘導できる手法であり、今後の応用や展開に期待できる。

参考文献

  1. Frignani, F.; Rangoni, A.; Catellani, M. A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o,o‘-Disubstituted Vinylarenes. Angew. Chem., Int. Ed. 1997, 36, 119–122. DOI: 10.1002/anie.199701191
  2. (a) Chiusoli, G. P.; Catellani, M. Competitive Processes in Palladium-Catalyzed C–C Bond Formation. Organomet. Chem. 1982, 233, C21–C24. DOI:10.1016/S0022-328X(00)82713-8 (b) Khanna, A.; Premachandra, I. D. U. A.; Sung, P. D.;  Van Vranken, D. L. Palladium-Catalyzed Catellani Aminocyclopropanation Reactions with Vinyl Halides. Org. Lett. 2013, 15, 3158–3161. DOI: 10.1021/ol401383m
  3. YuやZhouらは以前に、種々のCatellani型反応において置換ノルボルネンによる促進効果を見いだしている。(a)Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q. Ligand-Enabled Meta-C–H Alkylation and Arylation Using a Modified Norbornene. J. Am. Chem. Soc. 2015, 137, 11574–11577. DOI: 10.1021/jacs.5b08914 (b) Wang, J.; Li. R.; Dong, Z.; Liu, P.; Dong, G. Complementary Site-Selectivity in Arene Functionalization Enabled by Overcoming the ortho Constraint in Palladium/Norbornene Catalysis. Nat. Chem. 2018, 10, 866−872. DOI: 10.1038/s41557-018-0074-z (c) Cheng, H.-G.; Wu, C.; Chen, H.; Chen, R.; Qian, G.; Geng, Z.; Wei, Q.; Xia, Y.; Zhang, J.; Zhang, Y.; Zhou, .Q. Epoxides as Alkylating Reagents for the Catellani Reaction. Angew. Chem., Int. Ed. 2018, 57, 3444–3448. DOI: 10.1002/anie.201800573. (d) Chen, S.; Liu, Z.-S; Yang, T.; Hua, Y.; Zhou, Z.; Cheng, H.-G.; Zhou, Q. The Discovery of a Palladium(II)-Initiated Borono-Catellani Reaction. Angew. Chem., Int. Ed. 2018, 57, 7161–7165. DOI: 10.1002/anie.201803865. (e) Qian, G.; Bai, M.; Gao, S.; Chen, H.; Zhou, S.; Cheng, H.-G.; Yan, W.; Zhou, Q. Modular One-Step Three-Component Synthesis of Tetrahydroisoquinolines Using a Catellani Strategy. Angew. Chem., Int. Ed. 2018, 57, 10980–10984 DOI: 10.1002/anie.201806780. (f) Annamalai, P.; Hsiao, H.-C.; Raju, S.; Fu, Y.-H.; Chen, P.-L.; Horng, J.-C.; Liu, Y.-H.; Chuang, S.-C. Synthesis, Isolation, and Characterization of Mono- and Bis-norbornene-Annulated Biarylamines through Pseudo-Catellani Intermediates. Org. Lett. 2019, 21, 1182–1186. DOI: 10.1021/acs.orglett.9b00119
  4. Yuらは、2-ヒドロキシピリジン類がC–Hメタル化を促進する助触媒であることを見いだしている。(a)Wang, P.; Verma,P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Ligand-accelerated non-directed C−H functionalization of arenes. Nature2017, 551, 489–493. DOI: 1038/nature24632 (b) Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.; Winiewski, S. R.; Eastgate, M. D.; Yu, J.-Q. Ligand-Promoted Meta-C–H Arylation of Anilines, Phenols, and Heterocycles. J. Am. Chem. Soc. 2016, 138, 9269–9276. DOI: 10.1021/jacs.6b04966 (c) Farmer, M. E.; Wang, P.; Shi, H.; Yu, J.-Q. Palladium-Catalyzed meta-C–H Functionalization of Masked Aromatic Aldehydes. ACS Catal. 2018, 8, 7362−7367. DOI: 10.1021/acscatal.8b01599
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 治療応用を目指した生体適合型金属触媒:② 細胞外基質・金属錯体を…
  2. 「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の…
  3. 【速報】2011年ノーベル化学賞は「準結晶の発見」に!
  4. 生きたカタツムリで発電
  5. 専門用語豊富なシソーラス付き辞書!JAICI Science D…
  6. alreadyの使い方
  7. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするト…
  8. 「高分子材料を進化させる表面・界面制御の基礎」

注目情報

ピックアップ記事

  1. ウォルフ転位 Wolff Rearrangement
  2. イグ・ノーベル賞の世界展に行ってきました
  3. 化学 2005年7月号
  4. ポルフィリン化学100年の謎を解明:calix[3]pyrroleの合成と反応性
  5. ルテイン / lutein
  6. サラダ油はなぜ燃えにくい? -引火点と発火点-
  7. 高知和夫 J. K. Kochi
  8. 平井 剛 Go Hirai
  9. メチオニン選択的タンパク質修飾反応 Met-Selective Protein Modification
  10. 糖のC-2位アリール化は甘くない

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

ファンデルワールス力で分子を接着して三次元の構造体を組み上げる

第 656 回のスポットライトリサーチは、京都大学 物質-細胞統合システム拠点 (iCeMS) 古川…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP