[スポンサーリンク]

化学者のつぶやき

アルケンでCatellani反応: 長年解決されなかった副反応を制御した

[スポンサーリンク]

アルケンに対するCatellani反応が開発された。構造改変したノルボルネンを用いることで副反応のシクロプロパン化が抑制され、四置換オレフィンを効率的に合成することができる。

Catellani反応とシクロプロパン化

Catellani反応は、パラジウム触媒とNBE(ノルボルネン)を併用することでハロアレーンのオルト位とイプソ位を一挙に二官能基化できる優れた手法として知られる(図1A)[1]。この反応は、ハロアレーンのパラジウムへの酸化的付加、続くNBEとのカルボパラデーションを経てパラダサイクルAを形成することが鍵である。本反応を同様にC(sp2)–ハロゲン結合をもつハロアルケンに対して適用できれば、複雑な多置換アルケンが短工程で合成できる有用な手法となりうる。

しかし、ハロアルケンをCatellani反応に用いるとシクロプロパン化が進行し、目的の化合物が得られないことがわかっている(図1B)[2]。この問題はCatellani反応が最初に報告されてから20年以上解決されていない。アルケンは芳香族化合物に比べπ結合の反応性が高く、アルケニルノルボルニル中間体Bからの3-exo-trig環化反応が進行するためである。アルケニルCatellani反応の実現に際し、中間体B(もしくはC)からの3-exo-trig反応の抑制と、Bの望みのC–Hメタル化、及び中間体Cにおけるβ炭素脱離反応の促進が重要となる。
今回シカゴ大学のDong教授らは、長年の課題であったアルケニルCatellani反応を開発した(図1C)。構造改変した置換ノルボルネンによるシクロプロパン化の抑制や、2-ヒドロキシ5-トリフルオロメチルピリジン(5-CF3-Py-2-OH)助触媒の使用によるC–Hメタル化の促進が成功の鍵である[3][4]。容易に入手できるアルケニルトリフラートまたはブロモアルケンから位置選択的な多置換アルケンの合成が可能となった。

図1 A. 一般的なCatellani反応 B. アルケンに対するCatellani反応の適用(望まぬシクロプロパン化が進行する) C. 今回の反応

“Modular and regioselective synthesis of all-carbon tetrasubstituted olefins enabled by an alkenyl Catellani reaction”
Wang, J.; Dong, Z.; Yang, C.; Dong, G. Nat. Chem., 2019, 11, 1106–1112
DOI: 10.1038/s41557-019-0358-y

研究者:Guangbin Dong (董广彬)
研究者の経歴:
1999–2003 BSc, in Chemistry, Peking University, Beijing, China (Prof. Z. Yang)
2004–2009 Ph.D. in Chemistry, Stanford University, Stanford, California (Prof. B. M. Trost)

2009–2011 Camile and Henry Dreyfuns Postdoctral Fellow, California Institute of Technology (Prof. R. H. Grubbs)
2011–2016 Assistant Professor, CPRIT Scholar for Cancer Research, University of Texas at Austin
2016– Professor of Chemistry, The University of Chicago
研究内容:C–H/C–C結合活性化反応、金属触媒開発、 創薬化学、グラフェンナノリボンの合成

論文の概要

本手法ではPd(cod)Cl2/L1触媒に構造改変により独自に合成したNBE(N1)、さらに5-CF3-Py-2-OHを助触媒とし、炭酸セシウム存在下アルケニルトリフラート1とヨードアルカン2、オレフィン3を反応させることで四置換アルケン4が得られる(図2A)。5-CF3-Py-2-OHはパラダサイクル中間体のC–Hメタル化を促進していると考えられている。本反応の収率は、使用するNBE助触媒や配位子に非常に敏感である。例えば、N1のかわりにC2位がシアノ(N2)やエステル(N3)で置換されたNBEやC5位にアミドをもつNBE(N4)では4の収率が大幅に低下し、シクロプロパン化が併発した(詳細は論文参照)。また、配位子はビアリールジフェニルホスフィン(L1, L2)が本反応に有効であるのに対し、ジアルキルホスフィン(L3)や、2,6-ジメトキシビアリールジフェニルホスフィン(L4)では収率が大幅に低下する。本反応では、環状、非環状ハロアルケンに対し様々なハロアルカン2やオレフィン3を反応させることができる(4a–c)。さらに、ヨードアルカンの代わりにブロモアレーン2dや、オレフィン3の代わりにボロン酸3eを用いることも可能であり、それぞれ対応するカップリング体4d, 4eが得られる。
本反応を精査したところ、ビアリールジフェニルホスフィン配位子L1, L2を用いた際、これらの化合物由来のジベンゾホスホールオキシドが生成することがわかった(図2C)。この結果から、本反応の活性な配位子は、系中で生成するL5L6であると想定した。そこで、L2およびL6を用いた速度論実験を行った結果、L2を用いた場合にのみ反応誘導段階が観測され、両配位子をもちいた際の反応速度がほぼ同じであることが確認された。以上から、反応系中ではL5L6が活性な配位子として働いていると推察される。

図, 2. A. 最適条件 及びノルボルネンと配位子の検討 B.基質適用範囲 C. 反応機構解明実験

以上、初のハロアルケンに対するCatellani反応が開発された。単純なアルケニルトリフラートやハロアルケンを速やかに複雑化合物へ誘導できる手法であり、今後の応用や展開に期待できる。

参考文献

  1. Frignani, F.; Rangoni, A.; Catellani, M. A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o,o‘-Disubstituted Vinylarenes. Angew. Chem., Int. Ed. 1997, 36, 119–122. DOI: 10.1002/anie.199701191
  2. (a) Chiusoli, G. P.; Catellani, M. Competitive Processes in Palladium-Catalyzed C–C Bond Formation. Organomet. Chem. 1982, 233, C21–C24. DOI:10.1016/S0022-328X(00)82713-8 (b) Khanna, A.; Premachandra, I. D. U. A.; Sung, P. D.;  Van Vranken, D. L. Palladium-Catalyzed Catellani Aminocyclopropanation Reactions with Vinyl Halides. Org. Lett. 2013, 15, 3158–3161. DOI: 10.1021/ol401383m
  3. YuやZhouらは以前に、種々のCatellani型反応において置換ノルボルネンによる促進効果を見いだしている。(a)Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q. Ligand-Enabled Meta-C–H Alkylation and Arylation Using a Modified Norbornene. J. Am. Chem. Soc. 2015, 137, 11574–11577. DOI: 10.1021/jacs.5b08914 (b) Wang, J.; Li. R.; Dong, Z.; Liu, P.; Dong, G. Complementary Site-Selectivity in Arene Functionalization Enabled by Overcoming the ortho Constraint in Palladium/Norbornene Catalysis. Nat. Chem. 2018, 10, 866−872. DOI: 10.1038/s41557-018-0074-z (c) Cheng, H.-G.; Wu, C.; Chen, H.; Chen, R.; Qian, G.; Geng, Z.; Wei, Q.; Xia, Y.; Zhang, J.; Zhang, Y.; Zhou, .Q. Epoxides as Alkylating Reagents for the Catellani Reaction. Angew. Chem., Int. Ed. 2018, 57, 3444–3448. DOI: 10.1002/anie.201800573. (d) Chen, S.; Liu, Z.-S; Yang, T.; Hua, Y.; Zhou, Z.; Cheng, H.-G.; Zhou, Q. The Discovery of a Palladium(II)-Initiated Borono-Catellani Reaction. Angew. Chem., Int. Ed. 2018, 57, 7161–7165. DOI: 10.1002/anie.201803865. (e) Qian, G.; Bai, M.; Gao, S.; Chen, H.; Zhou, S.; Cheng, H.-G.; Yan, W.; Zhou, Q. Modular One-Step Three-Component Synthesis of Tetrahydroisoquinolines Using a Catellani Strategy. Angew. Chem., Int. Ed. 2018, 57, 10980–10984 DOI: 10.1002/anie.201806780. (f) Annamalai, P.; Hsiao, H.-C.; Raju, S.; Fu, Y.-H.; Chen, P.-L.; Horng, J.-C.; Liu, Y.-H.; Chuang, S.-C. Synthesis, Isolation, and Characterization of Mono- and Bis-norbornene-Annulated Biarylamines through Pseudo-Catellani Intermediates. Org. Lett. 2019, 21, 1182–1186. DOI: 10.1021/acs.orglett.9b00119
  4. Yuらは、2-ヒドロキシピリジン類がC–Hメタル化を促進する助触媒であることを見いだしている。(a)Wang, P.; Verma,P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Ligand-accelerated non-directed C−H functionalization of arenes. Nature2017, 551, 489–493. DOI: 1038/nature24632 (b) Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.; Winiewski, S. R.; Eastgate, M. D.; Yu, J.-Q. Ligand-Promoted Meta-C–H Arylation of Anilines, Phenols, and Heterocycles. J. Am. Chem. Soc. 2016, 138, 9269–9276. DOI: 10.1021/jacs.6b04966 (c) Farmer, M. E.; Wang, P.; Shi, H.; Yu, J.-Q. Palladium-Catalyzed meta-C–H Functionalization of Masked Aromatic Aldehydes. ACS Catal. 2018, 8, 7362−7367. DOI: 10.1021/acscatal.8b01599
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 男性研究者、育休後の生活を語る。
  2. アルメニア初の化学系国際学会に行ってきた!②
  3. ゴードン会議に参加して:ボストン周辺滞在記 Part II
  4. 虫歯とフッ素のお話① ~どうして歯磨きにフッ素が使われるの??~…
  5. 塗る、刷る、printable!進化するナノインクと先端デバイス…
  6. 結晶格子の柔軟性制御によって水に強い有機半導体をつくる
  7. ケクレン、伸長(新調)してくれん?
  8. アルカリ土類金属触媒の最前線

注目情報

ピックアップ記事

  1. 硤合不斉自己触媒反応 Soai Asymmetric Autocatalysis
  2. 活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分子状タングステン酸化物を複合化〜
  3. 量子コンピューターによるヒュッケル分子軌道計算
  4. ゲルのやわらかさの秘密:「負のエネルギー弾性」を発見
  5. 抗酸化能セミナー 主催:同仁化学研究所
  6. サントリー:重曹を使った新しい飲料「水分補給炭酸」発売
  7. 微生物の電気でリビングラジカル重合
  8. 西林 仁昭 Yoshiaki Nishibayashi
  9. 第91回―「短寿命化学種の分光学」Daniel Neumark教授
  10. Ru触媒で異なるアルキン同士をantiで付加させる

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP