[スポンサーリンク]

化学者のつぶやき

アルケンでCatellani反応: 長年解決されなかった副反応を制御した

[スポンサーリンク]

アルケンに対するCatellani反応が開発された。構造改変したノルボルネンを用いることで副反応のシクロプロパン化が抑制され、四置換オレフィンを効率的に合成することができる。

Catellani反応とシクロプロパン化

Catellani反応は、パラジウム触媒とNBE(ノルボルネン)を併用することでハロアレーンのオルト位とイプソ位を一挙に二官能基化できる優れた手法として知られる(図1A)[1]。この反応は、ハロアレーンのパラジウムへの酸化的付加、続くNBEとのカルボパラデーションを経てパラダサイクルAを形成することが鍵である。本反応を同様にC(sp2)–ハロゲン結合をもつハロアルケンに対して適用できれば、複雑な多置換アルケンが短工程で合成できる有用な手法となりうる。

しかし、ハロアルケンをCatellani反応に用いるとシクロプロパン化が進行し、目的の化合物が得られないことがわかっている(図1B)[2]。この問題はCatellani反応が最初に報告されてから20年以上解決されていない。アルケンは芳香族化合物に比べπ結合の反応性が高く、アルケニルノルボルニル中間体Bからの3-exo-trig環化反応が進行するためである。アルケニルCatellani反応の実現に際し、中間体B(もしくはC)からの3-exo-trig反応の抑制と、Bの望みのC–Hメタル化、及び中間体Cにおけるβ炭素脱離反応の促進が重要となる。
今回シカゴ大学のDong教授らは、長年の課題であったアルケニルCatellani反応を開発した(図1C)。構造改変した置換ノルボルネンによるシクロプロパン化の抑制や、2-ヒドロキシ5-トリフルオロメチルピリジン(5-CF3-Py-2-OH)助触媒の使用によるC–Hメタル化の促進が成功の鍵である[3][4]。容易に入手できるアルケニルトリフラートまたはブロモアルケンから位置選択的な多置換アルケンの合成が可能となった。

図1 A. 一般的なCatellani反応 B. アルケンに対するCatellani反応の適用(望まぬシクロプロパン化が進行する) C. 今回の反応

“Modular and regioselective synthesis of all-carbon tetrasubstituted olefins enabled by an alkenyl Catellani reaction”
Wang, J.; Dong, Z.; Yang, C.; Dong, G. Nat. Chem., 2019, 11, 1106–1112
DOI: 10.1038/s41557-019-0358-y

研究者:Guangbin Dong (董广彬)
研究者の経歴:
1999–2003 BSc, in Chemistry, Peking University, Beijing, China (Prof. Z. Yang)
2004–2009 Ph.D. in Chemistry, Stanford University, Stanford, California (Prof. B. M. Trost)

2009–2011 Camile and Henry Dreyfuns Postdoctral Fellow, California Institute of Technology (Prof. R. H. Grubbs)
2011–2016 Assistant Professor, CPRIT Scholar for Cancer Research, University of Texas at Austin
2016– Professor of Chemistry, The University of Chicago
研究内容:C–H/C–C結合活性化反応、金属触媒開発、 創薬化学、グラフェンナノリボンの合成

論文の概要

本手法ではPd(cod)Cl2/L1触媒に構造改変により独自に合成したNBE(N1)、さらに5-CF3-Py-2-OHを助触媒とし、炭酸セシウム存在下アルケニルトリフラート1とヨードアルカン2、オレフィン3を反応させることで四置換アルケン4が得られる(図2A)。5-CF3-Py-2-OHはパラダサイクル中間体のC–Hメタル化を促進していると考えられている。本反応の収率は、使用するNBE助触媒や配位子に非常に敏感である。例えば、N1のかわりにC2位がシアノ(N2)やエステル(N3)で置換されたNBEやC5位にアミドをもつNBE(N4)では4の収率が大幅に低下し、シクロプロパン化が併発した(詳細は論文参照)。また、配位子はビアリールジフェニルホスフィン(L1, L2)が本反応に有効であるのに対し、ジアルキルホスフィン(L3)や、2,6-ジメトキシビアリールジフェニルホスフィン(L4)では収率が大幅に低下する。本反応では、環状、非環状ハロアルケンに対し様々なハロアルカン2やオレフィン3を反応させることができる(4a–c)。さらに、ヨードアルカンの代わりにブロモアレーン2dや、オレフィン3の代わりにボロン酸3eを用いることも可能であり、それぞれ対応するカップリング体4d, 4eが得られる。
本反応を精査したところ、ビアリールジフェニルホスフィン配位子L1, L2を用いた際、これらの化合物由来のジベンゾホスホールオキシドが生成することがわかった(図2C)。この結果から、本反応の活性な配位子は、系中で生成するL5L6であると想定した。そこで、L2およびL6を用いた速度論実験を行った結果、L2を用いた場合にのみ反応誘導段階が観測され、両配位子をもちいた際の反応速度がほぼ同じであることが確認された。以上から、反応系中ではL5L6が活性な配位子として働いていると推察される。

図, 2. A. 最適条件 及びノルボルネンと配位子の検討 B.基質適用範囲 C. 反応機構解明実験

以上、初のハロアルケンに対するCatellani反応が開発された。単純なアルケニルトリフラートやハロアルケンを速やかに複雑化合物へ誘導できる手法であり、今後の応用や展開に期待できる。

参考文献

  1. Frignani, F.; Rangoni, A.; Catellani, M. A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o,o‘-Disubstituted Vinylarenes. Angew. Chem., Int. Ed. 1997, 36, 119–122. DOI: 10.1002/anie.199701191
  2. (a) Chiusoli, G. P.; Catellani, M. Competitive Processes in Palladium-Catalyzed C–C Bond Formation. Organomet. Chem. 1982, 233, C21–C24. DOI:10.1016/S0022-328X(00)82713-8 (b) Khanna, A.; Premachandra, I. D. U. A.; Sung, P. D.;  Van Vranken, D. L. Palladium-Catalyzed Catellani Aminocyclopropanation Reactions with Vinyl Halides. Org. Lett. 2013, 15, 3158–3161. DOI: 10.1021/ol401383m
  3. YuやZhouらは以前に、種々のCatellani型反応において置換ノルボルネンによる促進効果を見いだしている。(a)Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q. Ligand-Enabled Meta-C–H Alkylation and Arylation Using a Modified Norbornene. J. Am. Chem. Soc. 2015, 137, 11574–11577. DOI: 10.1021/jacs.5b08914 (b) Wang, J.; Li. R.; Dong, Z.; Liu, P.; Dong, G. Complementary Site-Selectivity in Arene Functionalization Enabled by Overcoming the ortho Constraint in Palladium/Norbornene Catalysis. Nat. Chem. 2018, 10, 866−872. DOI: 10.1038/s41557-018-0074-z (c) Cheng, H.-G.; Wu, C.; Chen, H.; Chen, R.; Qian, G.; Geng, Z.; Wei, Q.; Xia, Y.; Zhang, J.; Zhang, Y.; Zhou, .Q. Epoxides as Alkylating Reagents for the Catellani Reaction. Angew. Chem., Int. Ed. 2018, 57, 3444–3448. DOI: 10.1002/anie.201800573. (d) Chen, S.; Liu, Z.-S; Yang, T.; Hua, Y.; Zhou, Z.; Cheng, H.-G.; Zhou, Q. The Discovery of a Palladium(II)-Initiated Borono-Catellani Reaction. Angew. Chem., Int. Ed. 2018, 57, 7161–7165. DOI: 10.1002/anie.201803865. (e) Qian, G.; Bai, M.; Gao, S.; Chen, H.; Zhou, S.; Cheng, H.-G.; Yan, W.; Zhou, Q. Modular One-Step Three-Component Synthesis of Tetrahydroisoquinolines Using a Catellani Strategy. Angew. Chem., Int. Ed. 2018, 57, 10980–10984 DOI: 10.1002/anie.201806780. (f) Annamalai, P.; Hsiao, H.-C.; Raju, S.; Fu, Y.-H.; Chen, P.-L.; Horng, J.-C.; Liu, Y.-H.; Chuang, S.-C. Synthesis, Isolation, and Characterization of Mono- and Bis-norbornene-Annulated Biarylamines through Pseudo-Catellani Intermediates. Org. Lett. 2019, 21, 1182–1186. DOI: 10.1021/acs.orglett.9b00119
  4. Yuらは、2-ヒドロキシピリジン類がC–Hメタル化を促進する助触媒であることを見いだしている。(a)Wang, P.; Verma,P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Ligand-accelerated non-directed C−H functionalization of arenes. Nature2017, 551, 489–493. DOI: 1038/nature24632 (b) Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.; Winiewski, S. R.; Eastgate, M. D.; Yu, J.-Q. Ligand-Promoted Meta-C–H Arylation of Anilines, Phenols, and Heterocycles. J. Am. Chem. Soc. 2016, 138, 9269–9276. DOI: 10.1021/jacs.6b04966 (c) Farmer, M. E.; Wang, P.; Shi, H.; Yu, J.-Q. Palladium-Catalyzed meta-C–H Functionalization of Masked Aromatic Aldehydes. ACS Catal. 2018, 8, 7362−7367. DOI: 10.1021/acscatal.8b01599
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学系必見!お土産・グッズ・アイテム特集
  2. AI翻訳エンジンを化学系文章で比較してみた
  3. 触媒のチカラで拓く位置選択的シクロプロパン合成
  4. 有機硫黄ラジカル触媒で不斉反応に挑戦
  5. 緑色蛍光タンパク質を真似してRNAを光らせる
  6. 1,3-ジエン類のcine置換型ヘテロアリールホウ素化反応
  7. 研究室での英語【Part 2】
  8. ルテニウム触媒によるC-C結合活性化を介した水素移動付加環化型カ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. カーボンナノペーパー開発 信州大、ナノテク新素材
  2. Wileyより2つのキャンペーン!ジャーナル無料進呈と書籍10%引き
  3. 目指せ!! SciFinderマイスター
  4. 田辺製薬、エイズ関連治療薬「バリキサ錠450mg」を発売
  5. 「タキソールのTwo phase synthesis」ースクリプス研究所Baran研より
  6. ケムステ10年回顧録― 副代表版
  7. 親子で楽しめる化学映像集 その1
  8. 生体分子反応を制御する: 化学的手法による機構と反応場の解明
  9. 東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀
  10. 光触媒ラジカルカスケードが実現する網羅的天然物合成

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士

第108回の海外化学者インタビューは、スチュアート・カントリル博士です。Nature Chemist…

化学工業で活躍する有機電解合成

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全…

細胞内の温度をあるがままの状態で測定する新手法の開発 ~「水分子」を温度計に~

第266回のスポットライトリサーチは、東北大学大学院薬学研究科 中林研究室 修士二年生の杉村 俊紀(…

Chem-Station Twitter

PAGE TOP