[スポンサーリンク]

化学者のつぶやき

シクロヘキサンの片面を全てフッ素化する

 

フッ素は医薬品、有機エレクトロニクス材料、ポリマーなどに含まれており、その用途は多岐にわたります。テフロンの名で有名なポリテトラフルオロエチレン(PTFE)といったペルフルオロ炭素化合物は、耐薬品性、撥水性などの性質をもち、調理器具や塗装などに用いられています。

原子、分子レベルでこれらの性質を見てみると、フッ素は全原子の中で電気陰性度が最も高く、分極率が低いという特性があります。これらの性質から、テフロンなどのポリフッ化炭素化合物は電子反発しやすく、弱い分子間相互作用を示します。一方で、その高い電気陰性度に起因して、正電荷を帯びた分子と静電相互作用をしやすいといった性質があります。その現象が現れた顕著な例がベンゼン–ヘキサフルオロベンゼン錯体です(図1)[1]。ベンゼン(C6H6)は水素の低い電気陰性度のためベンゼン環上の電子密度が高い(δ)が、ヘキサフルオロベンゼンでは逆の現象が起こり、ベンゼン環上の電子密度はδ+となります。そのため、二つの化合物はお互いのベンゼン環の面が重なるように相互作用し固体を生じます。このような特異な性質から、フッ素を炭素骨格に導入することで現れる性質は化学者の強い興味や関心を集めています。

 

2015-05-16_17-02-37

多フッ素化された化合物例

 

先に挙げたペルフルオロ炭素化合物と比較し、部分的に多フッ素化された炭化水素はどのような性質を示すのでしょう。また、それらフッ素が、ある一方向に並べた場合どうなるのでしょう。分子全体で高極性になり、フッ素同士の電子反発により大きく歪んだ分子になることが予測されます。

最近、St Andrews大学のO’Haganらは上記に挙げた疑問の答えの1つとなるような、シクロヘキサンの片面が全てフッ素化された分子(cis-1,2,3,4,5,6-ヘキサフルオロシクロヘキサン:トップ画像)を独自の合成法で作り上げ、その化合物がもつ性質を明らかにしました。この分子は全てフッ素からなる面と水素からなる面とで真逆の電子密度をもつ、表裏のある分子です。今回はこの分子について紹介したいと思います。

 

“All-cis 1,2,3,4,5,6-hexafluorocyclohexane is a facially polarized cyclohexane”

Keddie, N. S.; Slawin, A. M. Z.; Lebl, T.; Philp, D.; O’Hagan, D. Nature Chem. 2015, 

DOI:10.1038/nchem.2232

 

合成困難化合物: 最も不安定な配座異性体、Fの低い求核性と大きな電子反発

2011年にO’Haganらはシクロヘキサンの炭素が全て一つずつフッ素化された分子bの合成に成功しています[2]。しかし、All-cis-ヘキサフルオロシクロヘキサンの合成には至ってませんでした。All-cis 1,2,3,4,5,6-ヘキサフルオロシクロヘキサンの合成が困難を極める理由は二つあります。

 

1. 化合物自体の基底エネルギーが高い

1,2,3,4,5,6-ヘキサフルオロシクロヘキサンは8種類の立体配置(configuration)をもち、立体配座(conformation)を含めると異性体は15種類に及びます。その中でも今回の目的化合物All-cis-ヘキサフルオロシクロヘキサンcは最も高い基底エネルギーをもち、一番安定な異性体aとは約15 kcal mol-1の差があります (図2)。

2. フッ素の低い求核性と大きな電子反発

後に述べますが、今回の合成ではC–O結合部位に対する逐次的なFのSN2反応を用いて立体選択的に合成する戦略を立案しています。フッ素の低い求核性と電子反発しやすい性質から狙い通りの求核置換反応を行うことは難しいと予想され、特に置換されたフッ素が多くなる合成終盤ではSN2反応よりも脱離反応が優先的に起こる可能性があります。

これらの理由によりAll-cis-ヘキサフルオロシクロヘキサンの合成はこれまで報告がありませんでした。

2015-05-16_17-03-36

 

合成経路

O’Haganらは酸素が全て下側を向いた化合物3(ミオイノシトール(2)から誘導)を鍵中間体とし、C–O結合部位にフッ化物イオンがSN2反応を起こすことでフッ素が全て上向きの分子が合成できると考えました(図 3)。しかし先ほどのAll-cis-ヘキサフルオロシクロヘキサン合成における問題点2にあげたようにFは求核性が低いため、狙い通りSN2反応を進行させるのは困難です。この問題に対し、O’Haganらはまず、3に対してdeoxofluor[3]という高温でも使えるフッ素化試薬を反応させ高収率で4へ誘導しました。その後はマイクロ波照射下トリルエチルアミン三フッ化水素塩(3HF·Et3N)を用いてC–O部位へのSN2反応を進行させています。すなわち、4のエポキシドに対する位置選択的なSN2反応、生じたヒドロキシ基をトリフラートへ変換した後にSN2反応を2度行うことで、12工程、総収率2%で目的のAll-cis-ヘキサフルオロシクロヘキサン(1)の合成を達成しました。合成終盤では適用可能なフッ素化剤が3HF·Et3Nに限られるなど、今回の合成の困難さが伺えます。特に最後の反応では当初懸念していた通り脱離反応も進行したため、低収率にとどまっています。

 

2015-05-16_17-04-24

図3 All-cis-ヘキサフルオロシクロヘキサンの合成

 

どのような性質をもつか?

フッ素を6つももつ化合物ではあるが、X線結晶構造解析により、本分子の構造は意外にもシクロヘキサンと類似し、イス型配座をとることがわかりました(図 4a)。原子同士の電子反発によりaxial位のフッ素同士は外側を向くことが考えられますが、X線構造解析の結果3つのaxial位にあるフッ素は全て平行に配置していました。また量子化学計算により水素側では正電荷、フッ素側では負電荷と二面性を表す化合物であることも明らかになりました。この性質はパッキング構造に大きく反映されており、全ての分子が同一方向を向いています(図 4b, 4c)。表裏でお互いに相対する電荷を帯びていることにより、この分子は既存のアルカン分子の中で最も大きな分子双極子をもちます。その一方で、親水性はなく”強い分極をもつが疎水性の化合物”であることがわかりました。さらに、O’Haganらは温度可変19F NMRを用いてAll-cis-ヘキサフルオロシクロヘキサンの反転障壁を求めた結果、∆H = 13.30.43 kcal mol-1 ∆S = –3.81.6 cal mol-1 K-1となりました (cf: シクロヘキサン; ∆H = 10.8 kcal mol-1, ∆S = 2.8 cal mol-1 K-1)。これらの結果からシクロヘキサンよりも遷移状態は類似しているが、少し不安定化されていることが推測できます。

 

2015-05-16_17-05-13

図4

 

以上によりO’Haganらは今まで誰も合成したことがないAll-cis 1,2,3,4,5,6-hexafluoro- cyclohexaneを合成し、その性質を明らかにしました。X線結晶構造解析の結果、シクロヘキサンとほぼ同じ構造をしていることがわかり、また、この分子は表と裏で逆の電荷を持つことも確認することができました。このように、本研究によってこれまで知られていなかった炭素フッ素化合物の新たな一面が発見されました。

とここまで、書きましたが、一番気になったのは、実はさらに基本的な物性、「この化合物の融点や沸点はいくつなの?」ということです。そもそも常温でX線結晶構造解析を行なっていることから固体であるということが単純な驚きでした。おそらく、融けた瞬間に揮発する、つまり昇華するような化合物であることが予想されます。残念ながら、今回それらの記載はなく、実験項読み取ると0.8mgしか合成していないので、基本的な物性は測れなかったというのが本音でしょう(論文査読でツッコミされなかった?のもすごい)。なにはともあれ、新規化合物の合成は多くの化学者が興味があるところだと思いますので、こういう基礎研究は応援したいと思います。

 

参考文献

  1. Patrick, C. R.; Prosser, G. S. Nature 1960, 187, 1021. DOI: 10.1038/1871021a0
  2. (a) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; O’Hagan, D. Angew. Chem., Int. Ed. 2012, 51, 10086. 
DOI: 10.1002/anie.201205577 (b) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; Kirsch, P.; O’Hagan, D. Chem. Commun. 2011, 47, 8265. DOI:10.1039/C1CC13016A (c) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; Kirsch, P.; O’Hagan, D. Chem. Commun. 2012, 48, 9643. DOI: 10.1039/C2CC34679F
  3. Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M. Chem. Commun. 1999, 215. DOI: 10.1039/A808517J

 

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 複雑化合物合成にも適用可能なC-H酸化反応
  2. マンガン触媒による飽和炭化水素の直接アジド化
  3. 芳香族化合物のC–Hシリル化反応:第三の手法
  4. 日本にあってアメリカにないガラス器具
  5. ヘテロベンザイン
  6. 2007年度イグノーベル賞決定
  7. 顕微鏡で有機化合物のカタチを決める!
  8. 不斉アリル位アルキル化反応を利用した有機合成

コメント

  1. これでオセロゲームができるナノボードを誰か作らないかな

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 2009年10大分子発表!
  2. セイファース・ギルバート アルキン合成 Seyferth-Gilbert Alkyne Synthesis
  3. 食品アクリルアミド低減を 国連専門委「有害の恐れ」
  4. スティーブン・ヴァン・スライク Steven Van Slyke
  5. 第一回 福山透教授ー天然物を自由自在につくる
  6. フッ素ドープ酸化スズ (FTO)
  7. 自由の世界へようこそ
  8. アステラス製薬、過活動膀胱治療剤「ベシケア錠」製造販売承認取得
  9. セレノフェン : Selenophene
  10. トリフルオロメタンスルホン酸ベンゾイル:Benzoyl Trifluoromethanesulfonate

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

単一分子を検出可能な5色の高光度化学発光タンパク質の開発

第76回のスポットライトリサーチは、大阪大学産業科学研究所永井研究室の鈴木和志さんにお願いしました。…

国連番号(UN番号)

危険な化学品を飛行機や船を使って輸送することは、現代では日常的に行われていることである。安全に化学品…

生きた細胞内でケイ素と炭素がはじめて結合!

生物は豊富にあるケイ素を利用しない。このたび、ケイ素と化学結合を形成して体内の生化学経路に取り込むこ…

H-1B ビザの取得が難しくなる!?

先日、米国の博士研究員の最低賃金変更についてお伝えしました。トランプ政権では、専門職に就くために…

高速エバポレーションシステムを使ってみた:バイオタージ「V-10 Touch」

タイトルから何だそれ?と思った方々。正しいです。高速のエバポ?どういうこと?と思うことでしょう。…

最も安価なエネルギー源は太陽光発電に

A transformation is happening in global energy mar…

Chem-Station Twitter

PAGE TOP