[スポンサーリンク]

B

ベックマン開裂 Beckmann Fragmentation

[スポンサーリンク]

概要

ケトキシムのN-O開裂を駆動力としてカチオン性転位を進行させる反応(ベックマン転位)において、オキシムα位置換基がカルボカチオンを安定化させる場合、ニトリルとカルボカチオンを与える開裂反応が競合する。これをベックマン開裂(Beckmann Fragmentation)と呼ぶ。カルボカチオンはE1脱離もしくは求核剤捕捉によって様々な化合物へと変換される。

基本文献

<Review>

開発の経緯

1886年にBeckmann転位の副反応としてはじめて報告され、1890年にO. Wallachによって最適化された条件が報告された。

反応機構

α位が4級炭素・ヘテロ原子(O, S, N)置換の場合には、α-カルボカチオンが安定化されるために、開裂が促進されやすくなる。β位にケイ素やスズが存在する場合にも優先する。転位によって化合物構造に歪みが生じる(熱力学的不利な)場合にも開裂が優先する。

反応例

カルボカチオン中間体の捕捉

三フッ化ジエチルアミノ硫黄(DAST)由来のフッ素アニオンによって捕捉される系[1]。

塩素で捕捉する形式[2]

カルボカチオンを脱離能のあるルイス塩基で捕捉し、引き続く有機金属試薬との反応へと供する系[3]

ケイ素およびスズ配向型形式

βケイ素配向型Beckmann開裂[4]

βスズ配向型Beckmann開裂[5]

全合成への応用

(±)-byssochlamic acidの合成[6]

(+/-)-modhepheneの合成[7]:α位酸素原子が開裂をアシストする。

(−)-elegansidiolの合成[8]

昆虫フェロモンの合成[9] : ケイ素配向型のBeckmann開裂。

関連動画

参考文献

  1. Kirihara, M.; Niimi, K.; Momose, T. Chem. Commun. 1997, 6,  599. doi:10.1039/a607749h
  2. Błaszczyk, K.; Koenig, H.; Mel, K.; Paryzek, Z. Tetrahedron 2006, 62, 1069. doi:10.1016/j.tet.2005.11.005
  3. (a) Fujioka, H.; Matsumoto, N.; Ohta, R.; Yamakawa, M.; Shimizu, N.; Kimura, T.; Murai, K. Tetrahedron Lett. 2015, 56, 2656. doi:10.1016/j.tetlet.2015.03.089 (b) Fujioka, H.; Matsumoto, N.; Kuboki, Y.; Mitsukane, H.; Ohta, R.; Kimura, T.;  Murai, K. Chem. Pharm. Bull. 2016, 64, 718. doi:10.1248/cpb.c16-00006
  4. Nishiyama, H.; Sakuta, K.; Osaka, N.; Arai, H.; Matsumoto, M.; Itoh, K. Tetrahedron 1988, 44, 2413.  doi:10.1016/S0040-4020(01)81693-8
  5. Bakale, R. P.; Scialdone, M. A.; Johnson, C. R. J. Am. Chem. Soc. 1990, 112, 6729. doi:10.1021/ja00174a053
  6. Stork, G.; Tabak, J. M.; Blount, J. F. J. Am. Chem. Soc. 1972, 94, 4735. doi:10.1021/ja00768a055
  7. Laxmisha, M. S.; Subba Rao, G. S. R. Tetrahedron Lett. 2000, 41, 3759. doi:10.1016/S0040-4039(00)00486-X
  8. Cao, L.; Sun, J.; Wang, X.; Zhu, R.; Shi, H.; Hu, Y. Tetrahedron 2007, 63, 5036. doi:10.1016/j.tet.2007.03.123
  9. Nishiyama, H.; Sakuta, K.; Itoh, K. Tetrahedron Lett. 1984, 25, 223. doi:10.1016/S0040-4039(00)99845-9

関連反応

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. コーリー・フックス アルキン合成 Corey-Fuchs Alk…
  2. 秋山・寺田触媒 Akiyama-Terada Catalyst
  3. フリッチュ・ブッテンバーグ・ウィーチェル転位 Fritsch-B…
  4. ダンハイザー シクロペンテン合成 Danheiser Cyclo…
  5. ハンチュ ジヒドロピリジン合成  Hantzsch Dihydr…
  6. クレーンケ ピリジン合成 Kröhnke Pyridine Sy…
  7. ロッセン転位 Lossen Rearrangement
  8. 交差アルドール反応 Cross Aldol Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 香月 勗 Tsutomu Katsuki
  2. 茅幸二、鈴木昭憲、田中郁三ら文化功労者に
  3. 第六回 多孔質材料とナノサイエンス Mike Zaworotko教授
  4. 4-ベンゾイル安息香酸N-スクシンイミジル : N-Succinimidyl 4-Benzoylbenzoate
  5. Wen-Jing Xiao
  6. 生物活性分子のケミカルバイオロジー
  7. 還元的にアルケンを炭素官能基で修飾する
  8. アンデルセン キラルスルホキシド合成 Andersen Chiral Sulfoxide Synthesis
  9. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応
  10. Skype英会話の勧め

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
« 8月    
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプシュ法や記憶媒体に関する資料が登録~

国立科学博物館は、平成20年度から重要科学技術史資料(愛称:未来技術遺産)の登録を実施しています。令…

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メ…

女子の強い味方、美味しいチョコレート作りを助ける化合物が見出される

チョコレートの製造過程でリン脂質分子を添加するという方法を用いれば、複雑なテンパリング(加熱・せん断…

火力発電所排気ガスや空気から尿素誘導体の直接合成に成功

第339回のスポットライトリサーチは、産業技術総合研究所 触媒化学融合研究センタ…

CV測定器を使ってみた

「電気化学」と聞くと、難しい数式が出てきて何やらとっつきづらいというイメージがある人が多いと思います…

知られざる法科学技術の世界

皆さんは、日本法科学技術学会という学会をご存じでしょうか。法科学は、犯罪における問題を”科学と技術”…

有機合成化学協会誌2021年9月号:ストリゴラクトン・アミド修飾アリル化剤・液相電解自動合成・ビフェニレン・含窒素複素環

有機合成化学協会が発行する有機合成化学協会誌、2021年9月号がオンライン公開されました。9…

イグノーベル賞2021が発表:今年は化学賞あり!

2021年9月9日、「人々を笑わせ考えさせた業績」に送られるイグノーベル賞の第31回授賞式が行われま…

理化学研究所上級研究員(創発デバイス研究チーム)募集

理化学研究所の創発物性科学研究センターで上級研究員の公募を行っております。今回募集対象である、創…

世界最小!? 単糖誘導体から還元反応によって溶ける超分子ヒドロゲルを開発

第338回のスポットライトリサーチは、東 小百合 博士にお願いしました。ヒドロゲルはいわゆる…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP