[スポンサーリンク]

B

ベックマン開裂 Beckmann Fragmentation

[スポンサーリンク]

概要

ケトキシムのN-O開裂を駆動力としてカチオン性転位を進行させる反応(ベックマン転位)において、オキシムα位置換基がカルボカチオンを安定化させる場合、ニトリルとカルボカチオンを与える開裂反応が競合する。これをベックマン開裂(Beckmann Fragmentation)と呼ぶ。カルボカチオンはE1脱離もしくは求核剤捕捉によって様々な化合物へと変換される。

基本文献

<Review>

開発の経緯

1886年にBeckmann転位の副反応としてはじめて報告され、1890年にO. Wallachによって最適化された条件が報告された。

反応機構

α位が4級炭素・ヘテロ原子(O, S, N)置換の場合には、α-カルボカチオンが安定化されるために、開裂が促進されやすくなる。β位にケイ素やスズが存在する場合にも優先する。転位によって化合物構造に歪みが生じる(熱力学的不利な)場合にも開裂が優先する。

反応例

カルボカチオン中間体の捕捉

三フッ化ジエチルアミノ硫黄(DAST)由来のフッ素アニオンによって捕捉される系[1]。

塩素で捕捉する形式[2]

カルボカチオンを脱離能のあるルイス塩基で捕捉し、引き続く有機金属試薬との反応へと供する系[3]

ケイ素およびスズ配向型形式

βケイ素配向型Beckmann開裂[4]

βスズ配向型Beckmann開裂[5]

全合成への応用

(±)-byssochlamic acidの合成[6]

(+/-)-modhepheneの合成[7]:α位酸素原子が開裂をアシストする。

(−)-elegansidiolの合成[8]

昆虫フェロモンの合成[9] : ケイ素配向型のBeckmann開裂。

関連動画

参考文献

  1. Kirihara, M.; Niimi, K.; Momose, T. Chem. Commun. 1997, 6,  599. doi:10.1039/a607749h
  2. Błaszczyk, K.; Koenig, H.; Mel, K.; Paryzek, Z. Tetrahedron 2006, 62, 1069. doi:10.1016/j.tet.2005.11.005
  3. (a) Fujioka, H.; Matsumoto, N.; Ohta, R.; Yamakawa, M.; Shimizu, N.; Kimura, T.; Murai, K. Tetrahedron Lett. 2015, 56, 2656. doi:10.1016/j.tetlet.2015.03.089 (b) Fujioka, H.; Matsumoto, N.; Kuboki, Y.; Mitsukane, H.; Ohta, R.; Kimura, T.;  Murai, K. Chem. Pharm. Bull. 2016, 64, 718. doi:10.1248/cpb.c16-00006
  4. Nishiyama, H.; Sakuta, K.; Osaka, N.; Arai, H.; Matsumoto, M.; Itoh, K. Tetrahedron 1988, 44, 2413.  doi:10.1016/S0040-4020(01)81693-8
  5. Bakale, R. P.; Scialdone, M. A.; Johnson, C. R. J. Am. Chem. Soc. 1990, 112, 6729. doi:10.1021/ja00174a053
  6. Stork, G.; Tabak, J. M.; Blount, J. F. J. Am. Chem. Soc. 1972, 94, 4735. doi:10.1021/ja00768a055
  7. Laxmisha, M. S.; Subba Rao, G. S. R. Tetrahedron Lett. 2000, 41, 3759. doi:10.1016/S0040-4039(00)00486-X
  8. Cao, L.; Sun, J.; Wang, X.; Zhu, R.; Shi, H.; Hu, Y. Tetrahedron 2007, 63, 5036. doi:10.1016/j.tet.2007.03.123
  9. Nishiyama, H.; Sakuta, K.; Itoh, K. Tetrahedron Lett. 1984, 25, 223. doi:10.1016/S0040-4039(00)99845-9

関連反応

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 武田オレフィン合成 Takeda Olefination
  2. シャピロ反応 Shapiro Reaction
  3. バーチ還元 Birch Reduction
  4. 衣笠反応 Kinugasa Reaction
  5. ペタシス・フェリエ転位 Petasis-Ferrier Rear…
  6. メチオニン選択的タンパク質修飾反応 Met-Selective …
  7. 森田・ベイリス・ヒルマン反応 Morita-Baylis-Hil…
  8. コーリー・ニコラウ マクロラクトン化 Corey-Nicolao…

注目情報

ピックアップ記事

  1. ロナルド・ブレズロウ賞・受賞者一覧
  2. SFTSのはなし ~マダニとその最新情報 後編~
  3. 触媒量の金属錯体でリビング開環メタセシス重合を操る
  4. ガラス器具を見積もりできるシステム導入:旭製作所
  5. 合成化学者のための固体DNP-NMR
  6. 生命の起源に迫る水中ペプチド合成法
  7. ザンドマイヤー反応 Sandmeyer Reaction
  8. いろんなカタチの撹拌子を試してみた
  9. ここまで来たか、科学技術
  10. トビン・マークス Tobin J. Marks

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー