[スポンサーリンク]

化学者のつぶやき

室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系

[スポンサーリンク]

 プリンストン大学・Eric Sorensenらは、光駆動型水素原子移動(HAT)触媒-卑金属触媒ハイブリッド系への紫外光(UV)照射によって、不活性アルカンを原料とする水素放出反応を世界で初めて実現した。

“Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis”
Wet, J. G.; Huang, D.; Sorensen, E. J.* Nat. Commun. 2015, 6, 10093. doi:10.1038/ncomms10093

問題設定と解決した点

 アルケンは各種官能基化の足がかりとして有用であるが、アルカンからの触媒的脱水素[1]によって製造することは困難を極める。また、現行の水素製造法自体もそのエネルギー効率の問題から抜本的改善が求められている。

 従来型触媒系は簡単な基質(ヘテロ原子隣接位)を対象とするものがほとんどである。アルカンに対する実施例[2]も、Ir, Rh触媒に光照射を伴うものが存在するが、貴金属触媒機構に依存する本質のために高温が必要になる。一方で自然界に目を向けると、鉄desaturaseがHAT過程に依存していることから、その人工的な模倣は脱水素過程を実現する有効戦略の一つとなる[3]。しかしながら、当量の酸化剤が必要となり水素放出系にはならない。

 本研究では従来型貴金属脱水素触媒の鍵過程である「酸化的付加→βヒドリド脱離→還元的脱離からの水素放出」を2つのHAT過程に置換える発想に基づき、アルカンからの脱水素型水素放出を実現している。

技術や手法の肝

アルカンを標的とする前半の”Hard HAT”には強い触媒(BDE~100 kcal/mol)が必要だが、炭素ラジカルを標的とする後半の”easy HAT”は比較的容易である(BDE~50 kcal/mol)。

上記のHAT過程それぞれに適しつつ、互いにつぶし合わない触媒系の選択が必要になる。

前半部の問題=“Hard HAT”過程には、強力な既知UV-HAT触媒である[Bu4N][W10O24] (TBADT)を適用することで解決している。後半部の問題=水素発生に適する触媒には、貴金属回避という指針から、水素発生研究で汎用されており信頼性もあるコバロキシム触媒を選択している。

主張の有効性検証

反応条件の最適

シクロオクタンを基質として条件検討。TBADT・コバロキシム触媒(COPC)いずれかのみ、near-UV(322 nm=TBADTの吸収帯)照射なしでは反応が進行しない。この3パラメタが全て存在するときのみ23%収率(TON~15)で脱水素反応が進行する。アルカンの脱水素は吸熱過程だが、UV照射によりエネルギー収支は釣り合う。触媒量を増やすとTBAカチオンの分解(1-ブテン+Bu3N)が起き、収率向上に寄与しない。コバルト触媒種についても検討しており、COPCがベスト。水素の発生はGCで確認。

コバルト触媒の最適化(冒頭論文SIより引用)

基質一般性

アルカンは総じて難しいが、触媒使用量が少ないのでシクロオクタンの場合にTON~48を達成。シクロヘキサンの脱水素は、シクロヘキセンで停止し、ベンゼンまで行かない。アリルラジカルが安定化を受けているのでCOPC活性種(BDE=50.5 kcal/mol[4a])では逆にHATが行かないためだろうと考察されている。アルコールの脱水素反応も検討しており、おおむね収率はアルカンより高く出る(こちらは大して凄くないので省略)。このことからも、最初の”Hard HAT”過程が困難であることがうかがえる。

アルカンの脱水素反応・基質一般性

反応機構の議論

電気化学的な測定だけだと如何様にでも過程を記述できてしまうため、UV-Visスペクトルに解析を頼っている。これらデータに基づく長々とした議論がSI上にあるものの、conclusiveな点がさほど無いので詳細は割愛。

議論すべき点

  • UV照射が必要な点。HAT触媒の特性が制限を生み出している。特に金属触媒連関系では、UV照射はリガンドを解離させたり諸々意図しないことを引き起こす。エネルギー収支の面でも良くないため、実用面でも制限がある。TBADTと同等機能を実現できる可視光触媒系が開発できれば、この問題は解決される。
  • 基質によっては数%未満の収率であり、まだまだ効率が悪い。やはり触媒系は干渉し、お互いつぶし合ってるのではないだろうか。
  • 脱水素を起こす炭素の位置は選べない。精密有機合成に使うにはもう二ひねり三ひねり必要に思える。
  • コバロキシム錯体の作業仮説と水素放出メカニズムについては、現状controversialと論文中でも書かれるに留まっている。

次に読むべき論文は?

  • コバロキシム錯体からの水素発生過程を詳しく調べている諸研究[4]
  • コバロキシム錯体やビタミンB12を触媒として用いた有機合成の論文。Carreiraのダフマニジン合成[5]などは好例?
  • 可視光ハイブリッド触媒系で活性型C-H切断と水素放出を行っている研究[6]。

参考文献

  1. Review: Gunanathan, C.; Milstein, D. Science 2013, 341, 6143. DOI: 10.1126/science.1229712
  2. (a) Burk, M. J.; Crabtree, R. H.; McGrath, D. V. JCS Chem. Commun. 1985, 1829. DOI: 10.1039/C39850001829 (b) Nomura, K.; Saito, Y. JCS Chem. Commun. 1988, 161. DOI: 10.1039/C39880000161 (c) Sakakura, T.; Sodeyama, T.; Tokunaga, Y.; Tanaka, M. Chem. Lett. 1988, 263. doi: 10.1246/cl.1988.263 (d) Chowdhury, A. D.; Weding, N.; Julis, J.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 6477. DOI: 10.1002/anie.201402287
  3. Bigi, M. A.; Red, S. A.; White, M. C. Nat. Chem. 2011, 3, 216. doi:10.1038/nchem.967
  4. (a) Li, G.; Han, A.; Pulling, M. E.; Estes, D. P.; Norton, J. R. J. Am. Chem. Soc. 2012, 134, 14662. DOI: 10.1021/ja306037w (b) Estes, D. P.; Grills, D. C.; Norton, J. R. J. Am. Chem. Soc. 2014, 136, 17362. DOI: 10.1021/ja508200g (c) Lacy, D. C.; Roberts, G. M.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 4860. DOI: 10.1021/jacs.5b01838 (d) Kaeffere, N.; Chavarot-Kerlidou, M.; Artero, V. Acc. Chem. Res. 2015, 48, 1286. DOI: 10.1021/acs.accounts.5b00058 (e) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Acc. Chem. Res. 2009, 42, 1995. DOI: 10.1021/ar900253e
  5. Weiss, M. E.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 11501. DOI: 10.1002/anie.201104681
  6. Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204. DOI:10.1021/jacs.7b00253
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ノーベル化学賞メダルと科学者の仕事
  2. ケムステイブニングミキサー2017へ参加しよう!
  3. 酸化反応条件で抗酸化物質を効率的につくる
  4. で、その研究はなんの役に立つの?
  5. 合成手法に焦点を当てて全合成研究を見る「テトロドトキシン~その1…
  6. プラスチックに数層の分子配向膜を形成する手法の開発
  7. 血液型をChemistryしてみよう!
  8. 明るい未来へ~有機薄膜太陽電池でエネルギー変換効率7.4%~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 思わぬ伏兵・豚インフルエンザ
  2. 最近のwebから〜固体の水素水?・化合物名の商標登録〜
  3. サイエンスアゴラ2014総括
  4. ノーベル賞化学者と語り合おう!「リンダウ・ノーベル賞受賞者会議」募集開始
  5. カクテルにインスパイアされた男性向け避妊法が開発される
  6. クライゼン縮合 Claisen Condensation
  7. 平尾一郎 Ichiro Hirao
  8. トビン・マークス Tobin J. Marks
  9. 有機EL素子の開発と照明への応用
  10. 落葉の化学~「コロ助の科学質問箱」に捧ぐ

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士

第108回の海外化学者インタビューは、スチュアート・カントリル博士です。Nature Chemist…

化学工業で活躍する有機電解合成

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全…

細胞内の温度をあるがままの状態で測定する新手法の開発 ~「水分子」を温度計に~

第266回のスポットライトリサーチは、東北大学大学院薬学研究科 中林研究室 修士二年生の杉村 俊紀(…

ケムステSlack、開設一周年!

ケムステが主体となって立ち上げた化学専用オープンコミュニティ、ケムステSlackを開設してはや一年が…

Chem-Station Twitter

PAGE TOP