[スポンサーリンク]

化学者のつぶやき

室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系

[スポンサーリンク]

 プリンストン大学・Eric Sorensenらは、光駆動型水素原子移動(HAT)触媒-卑金属触媒ハイブリッド系への紫外光(UV)照射によって、不活性アルカンを原料とする水素放出反応を世界で初めて実現した。

“Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis”
Wet, J. G.; Huang, D.; Sorensen, E. J.* Nat. Commun. 2015, 6, 10093. doi:10.1038/ncomms10093

問題設定と解決した点

 アルケンは各種官能基化の足がかりとして有用であるが、アルカンからの触媒的脱水素[1]によって製造することは困難を極める。また、現行の水素製造法自体もそのエネルギー効率の問題から抜本的改善が求められている。

 従来型触媒系は簡単な基質(ヘテロ原子隣接位)を対象とするものがほとんどである。アルカンに対する実施例[2]も、Ir, Rh触媒に光照射を伴うものが存在するが、貴金属触媒機構に依存する本質のために高温が必要になる。一方で自然界に目を向けると、鉄desaturaseがHAT過程に依存していることから、その人工的な模倣は脱水素過程を実現する有効戦略の一つとなる[3]。しかしながら、当量の酸化剤が必要となり水素放出系にはならない。

 本研究では従来型貴金属脱水素触媒の鍵過程である「酸化的付加→βヒドリド脱離→還元的脱離からの水素放出」を2つのHAT過程に置換える発想に基づき、アルカンからの脱水素型水素放出を実現している。

技術や手法の肝

アルカンを標的とする前半の”Hard HAT”には強い触媒(BDE~100 kcal/mol)が必要だが、炭素ラジカルを標的とする後半の”easy HAT”は比較的容易である(BDE~50 kcal/mol)。

上記のHAT過程それぞれに適しつつ、互いにつぶし合わない触媒系の選択が必要になる。

前半部の問題=“Hard HAT”過程には、強力な既知UV-HAT触媒である[Bu4N][W10O24] (TBADT)を適用することで解決している。後半部の問題=水素発生に適する触媒には、貴金属回避という指針から、水素発生研究で汎用されており信頼性もあるコバロキシム触媒を選択している。

主張の有効性検証

反応条件の最適

シクロオクタンを基質として条件検討。TBADT・コバロキシム触媒(COPC)いずれかのみ、near-UV(322 nm=TBADTの吸収帯)照射なしでは反応が進行しない。この3パラメタが全て存在するときのみ23%収率(TON~15)で脱水素反応が進行する。アルカンの脱水素は吸熱過程だが、UV照射によりエネルギー収支は釣り合う。触媒量を増やすとTBAカチオンの分解(1-ブテン+Bu3N)が起き、収率向上に寄与しない。コバルト触媒種についても検討しており、COPCがベスト。水素の発生はGCで確認。

コバルト触媒の最適化(冒頭論文SIより引用)

基質一般性

アルカンは総じて難しいが、触媒使用量が少ないのでシクロオクタンの場合にTON~48を達成。シクロヘキサンの脱水素は、シクロヘキセンで停止し、ベンゼンまで行かない。アリルラジカルが安定化を受けているのでCOPC活性種(BDE=50.5 kcal/mol[4a])では逆にHATが行かないためだろうと考察されている。アルコールの脱水素反応も検討しており、おおむね収率はアルカンより高く出る(こちらは大して凄くないので省略)。このことからも、最初の”Hard HAT”過程が困難であることがうかがえる。

アルカンの脱水素反応・基質一般性

反応機構の議論

電気化学的な測定だけだと如何様にでも過程を記述できてしまうため、UV-Visスペクトルに解析を頼っている。これらデータに基づく長々とした議論がSI上にあるものの、conclusiveな点がさほど無いので詳細は割愛。

議論すべき点

  • UV照射が必要な点。HAT触媒の特性が制限を生み出している。特に金属触媒連関系では、UV照射はリガンドを解離させたり諸々意図しないことを引き起こす。エネルギー収支の面でも良くないため、実用面でも制限がある。TBADTと同等機能を実現できる可視光触媒系が開発できれば、この問題は解決される。
  • 基質によっては数%未満の収率であり、まだまだ効率が悪い。やはり触媒系は干渉し、お互いつぶし合ってるのではないだろうか。
  • 脱水素を起こす炭素の位置は選べない。精密有機合成に使うにはもう二ひねり三ひねり必要に思える。
  • コバロキシム錯体の作業仮説と水素放出メカニズムについては、現状controversialと論文中でも書かれるに留まっている。

次に読むべき論文は?

  • コバロキシム錯体からの水素発生過程を詳しく調べている諸研究[4]
  • コバロキシム錯体やビタミンB12を触媒として用いた有機合成の論文。Carreiraのダフマニジン合成[5]などは好例?
  • 可視光ハイブリッド触媒系で活性型C-H切断と水素放出を行っている研究[6]。

参考文献

  1. Review: Gunanathan, C.; Milstein, D. Science 2013, 341, 6143. DOI: 10.1126/science.1229712
  2. (a) Burk, M. J.; Crabtree, R. H.; McGrath, D. V. JCS Chem. Commun. 1985, 1829. DOI: 10.1039/C39850001829 (b) Nomura, K.; Saito, Y. JCS Chem. Commun. 1988, 161. DOI: 10.1039/C39880000161 (c) Sakakura, T.; Sodeyama, T.; Tokunaga, Y.; Tanaka, M. Chem. Lett. 1988, 263. doi: 10.1246/cl.1988.263 (d) Chowdhury, A. D.; Weding, N.; Julis, J.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 6477. DOI: 10.1002/anie.201402287
  3. Bigi, M. A.; Red, S. A.; White, M. C. Nat. Chem. 2011, 3, 216. doi:10.1038/nchem.967
  4. (a) Li, G.; Han, A.; Pulling, M. E.; Estes, D. P.; Norton, J. R. J. Am. Chem. Soc. 2012, 134, 14662. DOI: 10.1021/ja306037w (b) Estes, D. P.; Grills, D. C.; Norton, J. R. J. Am. Chem. Soc. 2014, 136, 17362. DOI: 10.1021/ja508200g (c) Lacy, D. C.; Roberts, G. M.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 4860. DOI: 10.1021/jacs.5b01838 (d) Kaeffere, N.; Chavarot-Kerlidou, M.; Artero, V. Acc. Chem. Res. 2015, 48, 1286. DOI: 10.1021/acs.accounts.5b00058 (e) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Acc. Chem. Res. 2009, 42, 1995. DOI: 10.1021/ar900253e
  5. Weiss, M. E.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 11501. DOI: 10.1002/anie.201104681
  6. Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204. DOI:10.1021/jacs.7b00253

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 反芳香族化合物を積層させ三次元的な芳香族性を発現
  2. 触媒的C-H活性化型ホウ素化反応
  3. 東京大学大学院理学系研究科化学専攻 大学院入試情報
  4. 特許の基礎知識(1)そもそも「特許」って何?
  5. 【誤解してない?】4s軌道はいつも3d軌道より低いわけではない
  6. ケムステ国際版・中国語版始動!
  7. 本当の天然物はどれ?
  8. 開催間近!ケムステも出るサイエンスアゴラ2013

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ウルフ賞化学部門―受賞者一覧
  2. 第94回―「化学ジャーナルの編集長として」Hilary Crichton博士
  3. 研究者へのインタビュー
  4. ウィリアム・ロウシュ William R. Roush
  5. 第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授
  6. 科博特別展「日本を変えた千の技術博」にいってきました
  7. ボーディペプチド合成 Bode Peptide Synthesis
  8. BASF、新規のキラル中間体生産プロセスを開発!
  9. 抗体触媒 / Catalytic Antibody
  10. 原子力機構大洗研 150時間連続で水素製造 高温ガス炉 実用化へ大きく前進

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年3月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

第59回「希土類科学の楽しさを広めたい」長谷川靖哉 教授

第59回目の研究者インタビューです! 今回は第36回ケムステVシンポ「光化学最前線2023」の講演者…

材料開発の未来とロードマップ -「人の付加価値を高めるインフォマティクスとロボティクス」-

 申込みはこちら■セミナー概要本動画は、20022年11月11日に開催された共催セミナーで弊…

第58回「新しい分子が世界を変える力を信じて」山田容子 教授

第58回目の研究者インタビューです! 今回は第36回ケムステVシンポ「光化学最前線2023」の講演者…

始めよう!3Dプリンターを使った実験器具DIY:準備・お手軽プリント編

オリジナルの実験器具を3Dプリンターで作る企画を始めました。第一弾として3Dプリンターの導入と試しに…

第16回日本化学連合シンポジウム「withコロナ時代における化学への期待」

およそ3年間に渡る新型コロナウイルス感染症の蔓延により、経済、文化、研究、社会活動のすべてが大きなダ…

アカデミアケミストがパパ育休を取得しました!

こんにちは、こんばんは、おはようございます、Macyこと九大院薬 助教の寄立麻琴です。タイトルに…

巧みに骨格構築!Daphgracilineの全合成

ユズリハアルカロイドであるdaphgracilineの全合成が初めて達成された。Type II 分子…

【四国化成ホールディングス】新卒採用情報(2024卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

部分酸化状態を有する純有機中性分子結晶の開発に初めて成功

第464回のスポットライトリサーチは、熊本大学 大学院自然科学教育部 理学専攻 化学コース 上田研究…

マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用-パラメーター数が多い条件最適化テーマに対応したmiHub新機能もご紹介-

開催日:2023/2/1  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影響を受…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP