[スポンサーリンク]

化学者のつぶやき

室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系

[スポンサーリンク]

 プリンストン大学・Eric Sorensenらは、光駆動型水素原子移動(HAT)触媒-卑金属触媒ハイブリッド系への紫外光(UV)照射によって、不活性アルカンを原料とする水素放出反応を世界で初めて実現した。

“Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis”
Wet, J. G.; Huang, D.; Sorensen, E. J.* Nat. Commun. 2015, 6, 10093. doi:10.1038/ncomms10093

問題設定と解決した点

 アルケンは各種官能基化の足がかりとして有用であるが、アルカンからの触媒的脱水素[1]によって製造することは困難を極める。また、現行の水素製造法自体もそのエネルギー効率の問題から抜本的改善が求められている。

 従来型触媒系は簡単な基質(ヘテロ原子隣接位)を対象とするものがほとんどである。アルカンに対する実施例[2]も、Ir, Rh触媒に光照射を伴うものが存在するが、貴金属触媒機構に依存する本質のために高温が必要になる。一方で自然界に目を向けると、鉄desaturaseがHAT過程に依存していることから、その人工的な模倣は脱水素過程を実現する有効戦略の一つとなる[3]。しかしながら、当量の酸化剤が必要となり水素放出系にはならない。

 本研究では従来型貴金属脱水素触媒の鍵過程である「酸化的付加→βヒドリド脱離→還元的脱離からの水素放出」を2つのHAT過程に置換える発想に基づき、アルカンからの脱水素型水素放出を実現している。

技術や手法の肝

アルカンを標的とする前半の”Hard HAT”には強い触媒(BDE~100 kcal/mol)が必要だが、炭素ラジカルを標的とする後半の”easy HAT”は比較的容易である(BDE~50 kcal/mol)。

上記のHAT過程それぞれに適しつつ、互いにつぶし合わない触媒系の選択が必要になる。

前半部の問題=“Hard HAT”過程には、強力な既知UV-HAT触媒である[Bu4N][W10O24] (TBADT)を適用することで解決している。後半部の問題=水素発生に適する触媒には、貴金属回避という指針から、水素発生研究で汎用されており信頼性もあるコバロキシム触媒を選択している。

主張の有効性検証

反応条件の最適

シクロオクタンを基質として条件検討。TBADT・コバロキシム触媒(COPC)いずれかのみ、near-UV(322 nm=TBADTの吸収帯)照射なしでは反応が進行しない。この3パラメタが全て存在するときのみ23%収率(TON~15)で脱水素反応が進行する。アルカンの脱水素は吸熱過程だが、UV照射によりエネルギー収支は釣り合う。触媒量を増やすとTBAカチオンの分解(1-ブテン+Bu3N)が起き、収率向上に寄与しない。コバルト触媒種についても検討しており、COPCがベスト。水素の発生はGCで確認。

コバルト触媒の最適化(冒頭論文SIより引用)

基質一般性

アルカンは総じて難しいが、触媒使用量が少ないのでシクロオクタンの場合にTON~48を達成。シクロヘキサンの脱水素は、シクロヘキセンで停止し、ベンゼンまで行かない。アリルラジカルが安定化を受けているのでCOPC活性種(BDE=50.5 kcal/mol[4a])では逆にHATが行かないためだろうと考察されている。アルコールの脱水素反応も検討しており、おおむね収率はアルカンより高く出る(こちらは大して凄くないので省略)。このことからも、最初の”Hard HAT”過程が困難であることがうかがえる。

アルカンの脱水素反応・基質一般性

反応機構の議論

電気化学的な測定だけだと如何様にでも過程を記述できてしまうため、UV-Visスペクトルに解析を頼っている。これらデータに基づく長々とした議論がSI上にあるものの、conclusiveな点がさほど無いので詳細は割愛。

議論すべき点

  • UV照射が必要な点。HAT触媒の特性が制限を生み出している。特に金属触媒連関系では、UV照射はリガンドを解離させたり諸々意図しないことを引き起こす。エネルギー収支の面でも良くないため、実用面でも制限がある。TBADTと同等機能を実現できる可視光触媒系が開発できれば、この問題は解決される。
  • 基質によっては数%未満の収率であり、まだまだ効率が悪い。やはり触媒系は干渉し、お互いつぶし合ってるのではないだろうか。
  • 脱水素を起こす炭素の位置は選べない。精密有機合成に使うにはもう二ひねり三ひねり必要に思える。
  • コバロキシム錯体の作業仮説と水素放出メカニズムについては、現状controversialと論文中でも書かれるに留まっている。

次に読むべき論文は?

  • コバロキシム錯体からの水素発生過程を詳しく調べている諸研究[4]
  • コバロキシム錯体やビタミンB12を触媒として用いた有機合成の論文。Carreiraのダフマニジン合成[5]などは好例?
  • 可視光ハイブリッド触媒系で活性型C-H切断と水素放出を行っている研究[6]。

参考文献

  1. Review: Gunanathan, C.; Milstein, D. Science 2013, 341, 6143. DOI: 10.1126/science.1229712
  2. (a) Burk, M. J.; Crabtree, R. H.; McGrath, D. V. JCS Chem. Commun. 1985, 1829. DOI: 10.1039/C39850001829 (b) Nomura, K.; Saito, Y. JCS Chem. Commun. 1988, 161. DOI: 10.1039/C39880000161 (c) Sakakura, T.; Sodeyama, T.; Tokunaga, Y.; Tanaka, M. Chem. Lett. 1988, 263. doi: 10.1246/cl.1988.263 (d) Chowdhury, A. D.; Weding, N.; Julis, J.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 6477. DOI: 10.1002/anie.201402287
  3. Bigi, M. A.; Red, S. A.; White, M. C. Nat. Chem. 2011, 3, 216. doi:10.1038/nchem.967
  4. (a) Li, G.; Han, A.; Pulling, M. E.; Estes, D. P.; Norton, J. R. J. Am. Chem. Soc. 2012, 134, 14662. DOI: 10.1021/ja306037w (b) Estes, D. P.; Grills, D. C.; Norton, J. R. J. Am. Chem. Soc. 2014, 136, 17362. DOI: 10.1021/ja508200g (c) Lacy, D. C.; Roberts, G. M.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 4860. DOI: 10.1021/jacs.5b01838 (d) Kaeffere, N.; Chavarot-Kerlidou, M.; Artero, V. Acc. Chem. Res. 2015, 48, 1286. DOI: 10.1021/acs.accounts.5b00058 (e) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Acc. Chem. Res. 2009, 42, 1995. DOI: 10.1021/ar900253e
  5. Weiss, M. E.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 11501. DOI: 10.1002/anie.201104681
  6. Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204. DOI:10.1021/jacs.7b00253

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 出張増の強い味方!「エクスプレス予約」
  2. Goodenough教授の素晴らしすぎる研究人生
  3. 第25回ケムステVシンポ「データサイエンスが導く化学の最先端」を…
  4. 【書籍】化学探偵Mr.キュリー3
  5. 2012年Wolf化学賞はナノケミストリーのLieber博士,A…
  6. PACIFICHEM2010に参加してきました!①
  7. ヒト胚研究、ついに未知領域へ
  8. 論文引用ランキングから見る、化学界の世界的潮流

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 一流科学者たちの経済的出自とその考察
  2. 配糖体合成に用いる有機溶媒・試薬を大幅に削減できる技術開発に成功
  3. ナノ合金の結晶構造制御法の開発に成功 -革新的材料の創製へ-
  4. ヴィクター・スニーカス Victor A. Snieckus
  5. 【ケムステSlackに訊いて見た④】化学系学生の意外な就職先?
  6. “CN7-“アニオン
  7. 化学プラントにおけるAI活用事例
  8. 住友化学、液晶関連事業に100億円投資・台湾に新工場
  9. 縮合剤 Condensation Reagent
  10. 研究者のためのCG作成術③(設定編)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年3月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

超分子ランダム共重合を利用して、二つの”かたち”が調和されたような超分子コポリマーを造り、さらに光反応を利用して別々の”かたち”に分ける

第407回のスポットライトリサーチは、千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コー…

セレンディピティ:思いがけない発見・発明のドラマ

hodaです。今回は1993年に刊行され、2022年7月に文庫化された書籍について書いていき…

第29回 ケムステVシンポ「論文を書こう!そして…」を開催します

コロナ禍による規制も少しずつ緩和されてきて、逆にオンライン会議が逆に少し恋しくなっている今日この頃か…

マテリアルズ・インフォマティクス活用検討・テーマ発掘の進め方 -社内促進でつまずやすいポイントや解決策を解説-

開催日:2022/08/24 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

高分子固体電解質をAIで自動設計

第406回のスポットライトリサーチは、早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室の畠山…

スクショの友 Snagit

スクリーンショット(スクショ)は、手軽に画像や図をコピーすることができ、資料作成などにおいて便利な機…

第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!

こんにちは、今回第28回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

量子アルゴリズム国際ハッカソンQPARC Challengeで、で京都大学の学生チームが優勝!!

そこかしこで「量子コンピュータ」という言葉を聞くようになった昨今ですが、実際に何がどこまでできるのか…

Nature主催の動画コンペ「Science in Shorts」に応募してみました

以前のケムステ記事で、Springer Nature社が独・メルク社と共同で、動画コンペ「Scien…

クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発見―薬剤耐性菌の出現を抑える感染症治療薬への応用に期待―

第405回のスポットライトリサーチは、広島大学大学院統合生命科学研究科 生物工学プログラム 細胞機能…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP