[スポンサーリンク]

ケムステニュース

FM-AFMが実現!”溶ける”を原子レベルで直接観察

[スポンサーリンク]

金沢大学は、同大学理工研究域電子情報学系の福間剛士教授と理工研究域バイオAFM先端研究センターの宮田一輝助教らの研究グループが、フィンランドAalto大学の研究グループと共同で、従来の約50倍の速度で液中原子分解能観察が可能な高速周波数変調原子間力顕微鏡(FM-AFM)を開発し、水中でカルサイト(方解石、CaCO3)の表面が溶解する様子を原子レベルで観察することに成功したことを発表した。この成果は6月26日、American Chemical Society「Nano Letters」のオンライン版[1]に掲載された。

図1. カルサイト溶解現象のFM-AFM観察: (a) カルサイトの構造、(b) FM-AFM観察の様子(0, 10, および20 sのスナップショット)、(c) (b)の10 sにおける線P-Qにおける高さ方向の解析 (引用:金沢大学HP、研究トピック)

 

(中略)

今回、カルサイトの溶解過程に関する原子レベルでの詳細な理解が得られたことで、これまで巨視的な溶解過程のシミュレーションに用いられてきた経験的パラメータが持つ物理的意味を根本的に理解できる。これにより、自然界でのさまざまな溶液環境中における溶解挙動を正確に予測することが可能となり、将来的には大規模な炭素循環の予測精度向上にも貢献できると説明している。

また、開発した高速FM-AFM技術は、カルサイトの溶解過程だけでなく、さまざまな鉱物、有機分子、生体分子の結晶成長・溶解、自己組織化、さらには金属腐食、触媒反応など、幅広い固液界面現象の原子スケール観察に用いることができる。これらの現象も従来は原子レベルで直接観察する手段はなかったため、今回開発された技術により、さまざまな未知の現象が発見されることが期待できるとしている。(引用:マイナビニュース、2017年7月17日

長過ぎる。3行で。という方にご説明すると『すんごいAFMを使って、塩が水に溶けていく様子を、原子レベルで観察しちゃった』って話です。

近年、発展の目覚ましい走査型プローブ顕微鏡(SPM)。その中でも本記事の原子間力顕微鏡(AFM)や、その仲間の走査型トンネル顕微鏡(STM)の発展は目を見張るものがあります。記憶に新しい話では、最近開催されたナノカーレース。STMを使ってナノカーがAu基板上を走る様を観察してました。ケムステではスポットライトリサーチとして『水分子が見えた!ー原子間力顕微鏡を用いた水分子ネットワークの観察ー』でAFMを取り上げました。

本記事は溶液のAFM観察。その弱点の一つとして時間分解能があります。これまでの時間分解能は、1面分の試料を観察するために1分弱(1 min/frame)ほど必要でした。一方、開発されたFM-AFMは1面分の観察に1秒(1 s/frame)しかかかりません。おおよそ50倍です。比較すると凄さが際立ちます。これを皮切りに、溶液中や固液界面の様々な化学的現象が可視化できるとのこと。フレームレートを考えると秒単位のタイムスケールで起こる化学現象はFE-AFMによる観察が大変利きそうです。私は自己組織化する材料が、溶液中でガシャガシャと組み上がる様を観察できたら楽しいなーなんて考えたりしました。もはややっているかとも思いますが。。。

化学結合の開裂、形成までを完全に可視化して動画的に観察できたら、さらにすごいとおもいますが、そのような反応は10-12秒(ピコ秒)スケールなので、現状ではまだまだ難しいでしょう。中間構造をスナップショットとして捉えることなら可能かもしれません。化学結合形成反応も可視化して動画的に追える。なんて日も存外近いのかもしれません。溶液ではないのですが、基板上での化学反応の進行をスナップショットとして追跡した例は続々と報告されてきています。[2]一番最近では東大、京大、愛媛大の研究グループが『ばね型有機分子の炭素骨格変換反応』として多縮環芳香族分子が銅基板上で骨格を組み換える反応をAFMで追跡しました。

 

ケムステ観覧者には釈迦に説法かと思いますが、せっかくなのでAFMの概要を。(図1)

原子間力顕微鏡(AFM)は、観察対象試料と探針の原子間にはたらく力を検出して画像を得る顕微鏡。出力される画像は試料表面の凹凸形状をコントラストで示したものです。

AFM測定のイメージ

AFMの装置構成図

図1. AFMの概略図(株式会社日立ハイテクサイエンスHPより転載)

 

株式会社日立ハイテクサイエンスのHPにあるアニメーションが非常にわかりやすくAFM観察のイメージを示しています。

板バネ(カンチレバー)の先に数nmの針(探針)がついており、その針が試料表面をなぞる。カンチレバー背面にはレーザーを反射する金が被覆されている。そこにレーザー光を照射すると、カンチレバーの上下に伴って、レーザー光の反射方向が変化する。この反射方向の変位(たわみ信号)を光センサーで観測して画像に変換する。カンチレバーの動作モードとしてコンタクトモード、ノンコンタクトモード、タッピングモード、フォースモードなどが存在する。変位の観測モードとしては、単純な変位モード、振幅変調モード、そして周波数変調モード(下記参照)がある。原子間力はあらゆる物質の間に働くため容易に試料を観察することができるため、様々な環境(大気中、液体中、または高温、低温など)で、測定できる。弱点としては時間分解能、液体中での感度、原子の区別ができないなどがあったが、それらは着実に解消されつつある。

記事で取り上げられたFM-AFMの場合は、溶液中でのAFM観察での弱点である時間分解能と感度の底上げに成功している。キーとなるのは高速周波数変調方式。周波数変調方式とは以下のような原理。まずカンチレバーを一定周波数で振動させて試料をなぞる。試料表面の凹凸に応じて、カンチレバーの振動の周波数は変化する。その結果、反射レーザーも対応する周波数で振動する。試料表面の凹凸に応じた周波数の変調を可視化して、凹凸形状をコントラストで示す。レーザーの変位よりも振動数変調の方が高感度かつ高い信号雑音比で捉えることができる。また、FM-AFMの感度を上げるには探針の硬さ、カンチレバーのQ値というパラメーター、そして光センサーの感度が重要であり、本記事のAFMはその点でも感度を底上げしている。

 

AFMの進化はめざましいですね。可視化できることは科学研究において重要なファクターの一つです。AFMの進化が続けば、科学研究における根本が覆るということもあり得るでしょう。今でこそ当たり前のNMR測定だって、もはや測らないようになる、かもしれません。いずれにしても、今後のAFM進化、楽しみですね。

 

 

関連する文献

  1. Miyata, K.; Tracey, J.; Miyazawa, K.; Haapasilta, V.; Spijker, P.; Kawagoe, Y.; Foster, A. S.; Tsukamoto, K.; Fukuma, T. Nano Letters 2017,17, 4083-4089, doi: 10.1021/acs.nanolett.7b00757.
  2. (a) G. de Oteyza, D.; Gorman, P.; Chen, Y. C.; Wickenburg, S.; Riss, A.; Mowbray, D. J.; Etkin, G.; Pedramrazi, Z.; Tsai, H. Z.; Rubio, A.; Crommie, M. F.; Fischer, F. R. Science 2013, 340, 1434-1437, doi: 10.1126/science.1238187, (b) Pavliček, N.; Schuler, B.; Collazos, S: Moll, N; Pérez, D.; Guitián, E.; Meyer, G.; Peña, D.; Gross, L. Nature Chem. 2015, 7, 623–628, doi: 10.1038/nchem.2300, (c) Schuler, B.; Fatayer, S.; Mohn, F.; Moll, N.; Pavliček, N.; Meyer, G.; Peña D.; Gross, L. Nature Chem. 2016, 8, 220–224, doi:10.1038/nchem.2438, (d) Kawai, S.; Haapasilta, V.; Lindner, B. D.; Tahara, K.; Spijker, P.; Buitendijk, J. A.; Pawlak, R.; Meier, T.; Tobe, Y.; Foster, A. S.; Meyer, E. Nat. Commun. 2016, 7, 12711, doi:10.1038/ncomms12711, (e) Shiotari, A.; Nakae, T.; Iwata, K.; Mori, S.; Okujima, T.; Uno, H.; Sakaguchi, H.; Sugimoto, Y. Nat. Commun. 2017, 8, 16089, doi:10.1038/ncomms16089

関連書籍

 

関連リンク

Trogery12

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. 東海カーボンと三菱化学、カーボンブラックの共同会社を断念
  2. 保護により不斉を創る
  3. 白血病治療新薬の候補物質 京大研究グループと日本新薬が開発
  4. ALSの新薬「ラジカット」試してます
  5. 高校生が河川敷で化学実験中に発火事故
  6. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治…
  7. タミフル―米国―厚労省 疑惑のトライアングル
  8. 「女性用バイアグラ」開発・認可・そして買収←イマココ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Twitter発!「笑える(?)実験大失敗集」
  2. 化学反応のクックパッド!? MethodsNow
  3. メルク、主力薬販売停止で15%減益
  4. トリス(トリフェニルホスフィン)ロジウム(I) クロリド:Tris(triphenylphosphine)rhodium(I) Chloride
  5. 城戸 淳二 Junji Kido
  6. 化学のブレークスルー【有機化学編】
  7. 「オープンソース・ラボウェア」が変える科学の未来
  8. パリック・デーリング酸化 Parikh-Doering Oxidation
  9. 化学研究ライフハック: Evernoteで論文PDFを一元管理!
  10. 元素生活 完全版

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍する化学メーカー編~

bergです。化学者のためのエレクトロニクス入門と銘打ったこのコーナーも、今回で4回目となりました。…

第103回―「機能性分子をつくる有機金属合成化学」Nicholas Long教授

第103回の海外化学者インタビューは、ニック・ロング教授です。インペリアル・カレッジ・ロンドンの化学…

松原 亮介 Ryosuke Matsubara

松原亮介(まつばら りょうすけ MATSUBARA Ryosuke、1978-)は、日本の化学者であ…

CEMS Topical Meeting Online 超分子ポリマーの進化形

7月31日に理研CEMS主催で超分子ポリマーに関するオンライン講演会が行われるようです。奇しくも第7…

有機合成化学協会誌2020年7月号:APEX反応・テトラアザ[8]サーキュレン・8族金属錯体・フッ素化アミノ酸・フォトアフィニティーラベル

有機合成化学協会が発行する有機合成化学協会誌、2020年7月号がオンライン公開されました。コ…

第102回―「有機薄膜エレクトロニクスと太陽電池の研究」Lynn Loo教授

第102回の海外化学者インタビューは、Lynn Loo教授です。プリンストン大学 化学工学科に所属し…

化学系必見!お土産・グッズ・アイテム特集

bergです。今回は化学系や材料系の学生さんや研究者の方々がつい手に取りたくなりそうなグッズなどを筆…

危険物取扱者:記事まとめ

世の中には様々な化学系の資格があり、化学系企業で働いていると資格を取る必要に迫られる機会があります。…

Chem-Station Twitter

PAGE TOP