[スポンサーリンク]

一般的な話題

マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(2)

[スポンサーリンク]

本シリーズでは、マイクロ波のアプリケーションに焦点を絞り、その原理や効果、経済的なメリット、新たなプロダクトの創出、スケールアップ事例について紹介する。前回の記事ではアプリケーションの具体的事例の一部を紹介した。本記事では、続いて具体的事例について紹介する。

エマルジョン系

マイクロ波は反応基質や触媒に直接エネルギー伝達できる。この性質を利用することで、水層と油層が混在するエマルジョン系の化学反応においても、水層の選択加熱によって反応促進や劣化抑制を行える。

外部加熱方式においては、水層と油層のいずれも溶解する溶媒の使用が必要となる。最終製品への溶媒残留を嫌い、反応の無溶媒化を試みたとしても、今度は高温伝熱面との接触による着色や劣化などの課題が発生してしまう。

しかし、基質や触媒を直接、選択的に加熱できるマイクロ波反応においては無溶媒化だけでなく、高温な伝熱面を必要としないので着色や劣化も回避できる(出願済み)。また、無溶媒化は、設備の小型化や連続化にも潜在的に寄与する。

乾燥、凍結乾燥

従来の乾燥/凍結乾燥プロセスにおいては、外部雰囲気や熱媒などのエネルギー媒体を通じて、蒸発・昇華に必要なエネルギーを乾燥対象物へ間接的に供給する。エネルギーは、乾燥対象物の外部表面から供給されるため、対象物内部での温度分布形成は避けられない。このため、内部乾燥効率の低下や、乾燥時間の増大、表面の過乾燥による品質劣化などが発生する。

一方で、波そのものがエネルギーの伝達媒体であるマイクロ波乾燥では、乾燥対象物(Ex. 氷、水、溶媒)へ直接エネルギーが伝達される。したがって、温度分布が形成されにくく、内部加熱も可能である。効果として、乾燥速度向上や均一乾燥、温度低下による品質向上を達成することができる。

以下に、セラミックスの乾燥事例をご紹介する。マイクロ波と大気炉による乾燥において、セラミックスの内部温度および表面温度をモニターした。通常乾燥 (大気炉)において生じる外側から内側にかけての温度分布が、マイクロ波乾燥では生じていないことが分かる。

また、凍結乾燥は極めて長い装置占有時間が必要であり、製造コストが一つの課題として知られる。こちらにおいても、マイクロ波の活用によって、氷分子への選択的なエネルギー伝達ができるため、凍結乾燥速度は2倍以上に向上することを確認している。

以下は、モデル実験による通常法とマイクロ波凍結乾燥との比較結果、および当社保有の検証設備である。グラフからも乾燥時間が格段に短縮されていることが読み取れる。

ナノ粒子合成(均一加熱)

ナノ粒子の合成は、温度依存的な粒子成長を伴うプロセスである。電材などの用途において粒子径分布の最適化は極めて重要だが、外部伝熱面からのエネルギー伝達に依存する通常加熱法においては、反応器内部に温度分布が生じ、合成されるナノ粒子の粒子径分布が課題となる。温度分布はスケールアップに伴い大きくなってしまうため、ナノ粒子合成のスケールアップは一般に困難であると言われる。

一方で、マイクロ波は反応液を直接、内部から加熱することができるため、反応器内部の温度分布を均一化できる。当社は、ナノ粒子の粒子径分布狭小化を実現しつつスケールアップも達成している。

フィルム加熱

実は、フィルム領域においてもマイクロ波は活用できる。用途は、乾燥、表面処理、剥離、接着など様々で、Roll to rollのようなフィルムが搬送された環境においても適用することが可能である。

例えば、フィルムの特定層の加熱・焼成や水の選択加熱による数倍以上の乾燥速度向上も可能である。

また、接着剤の選択加熱によって、基材への熱ダメージを低減することも可能である。

当社では、顧客所有のフィルム製造ラインにアドオンすることを想定した設備として、フィルム加熱装置を開発・保有している。マイクロ波の電磁界を任意の箇所に集中させ、乾燥や焼成を効率化することができる。

焼成

最後に、マイクロ波による固体焼成を紹介する。当社においても、1000℃を超える領域での焼成を扱っている。物質選択的な加熱を得意とするマイクロ波焼成においては、対象物質温度>>雰囲気温度の環境を作ることが可能である。外部雰囲気も含めて全体を加熱する通常加熱とは、この点で大きく異なる。

そのため、省エネ化や急速昇温、バルク温度低減による装置負荷低減、さらには新規物性発現が見られる例もある。

本記事はマイクロ波化学株式会社からの寄稿記事です。

会社プロフィール

マイクロ波化学株式会社

マイクロ波を活用した製造プロセスの開発や、従来技術では製造困難な新素材開発に取り組む阪大発ベンチャーです。この技術は、医薬、電子材料、食品、燃料など、幅広い分野における製造プロセスへ応用が可能で、弊社は国内外の様々なメーカーとの共同開発や独自プラント立ち上げを通し、化学産業のオープンイノベーションを推進しています。

大阪府吹田市山田丘2番8号テクノアライアンス棟3階

代表番号:06-6170-7595

メール:info@mwcc.jp

URL:https://mwcc.jp/

関連記事

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用
  2. 関東化学2019年採用情報
  3. イボレノリドAの単離から全合成まで
  4. 3日やったらやめられない:独自配位子開発と応用
  5. 光照射下に繰り返し運動をおこなう分子集合体
  6. Nature Catalysis創刊!
  7. 混合試料から各化合物のスペクトルを得る(DOSY法)
  8. スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. −(マイナス)と協力して+(プラス)を強くする触媒
  2. クリンコヴィッチ反応 Kulinkovich Reaction
  3. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  4. オーストラリア国境警備で大活躍の”あの”機器
  5. キレトロピー反応 Cheletropic Reaction
  6. ヨアヒム・ザウアー Joachim Sauer
  7. 武田や第一三共など大手医薬、特許切れ主力薬を「延命」
  8. 新人化学者の失敗ランキング
  9. 第45回―「ナノ材料の設計と合成、デバイスの医療応用」Younan Xia教授
  10. 有機合成化学協会誌2020年1月号:ドルテグラビルナトリウム・次亜塩素酸ナトリウム5水和物・面性不斉含窒素複素環カルベン配位子・光酸発生分子・海産天然物ageladine A

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

非古典的カルボカチオンを手懐ける

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触…

CEMS Topical Meeting Online 超分子ポリマーの進化形

1月28日に毎年行われている理研の無料シンポジウムが開催されるようです。事前参加登録が必要なので興味…

カルボン酸に気をつけろ! グルクロン酸抱合の驚異

 カルボン酸は、カルボキシ基 (–COOH) を有する有機化合物の一群です。カルボン…

第138回―「不斉反応の速度論研究からホモキラリティの起源に挑む」Donna Blackmond教授

第138回の海外化学者インタビューはドナ・ブラックモンド教授です。2009年12月現在、インペリアル…

Ru触媒で異なるアルキン同士をantiで付加させる

Ru触媒を用いたアルキンのanti選択的ヒドロおよびクロロアルキニル化反応が開発された。本反応は共役…

化学系必見!博物館特集 野辺山天文台編~HC11Nってどんな分子?~

bergです。突然ですが今回から「化学系必見!博物館特集」と銘打って、私が実際に訪れたいちおしの博物…

有機合成化学協会誌2021年1月号:コロナウイルス・脱ニトロ型カップリング・炭素環・ヘテロ環合成法・環状γ-ケトエステル・サキシトキシン

有機合成化学協会が発行する有機合成化学協会誌、2021年1月号がオンライン公開されました。あ…

第137回―「リンや硫黄を含む化合物の不斉合成法を開発する」Stuart Warren教授

第137回の海外化学者インタビューはスチュアート・ウォーレン教授です。ケンブリッジ大学化学科に所属し…

Chem-Station Twitter

PAGE TOP