[スポンサーリンク]

スポットライトリサーチ

荷電π電子系の近接積層に起因した電子・光物性の制御

[スポンサーリンク]

第463回のスポットライトリサーチは、立命館大学 生命科学部応用化学科 超分子創製化学研究室(前田研究室)の田中 宏樹(たなか ひろき)さんにお願いしました。

前田研究室では、新規π電子系の合成を基軸とした新概念・新機能の創出を行っており、具体的には、分子の骨格構造の設計、相互作用部位の導入による超分子集合体やナノ組織構造の構築、特定の金属イオンやアニオンに対する親和性の評価・制御、分子・集合体の電子・光物性の評価・制御に関して、各種分光法や表面測定を駆使して検証されています。
本プレスリリースの研究内容は、荷電ポルフィリンのイオンペアリングについてです。研究背景として近年、多様なπ電子系化合物が合成され、その電子状態や集合化形態を制御することにより、有機エレクトロニクス材料として利用されています。一方、前田研究室では、π電子系コアに電荷を有する荷電π電子系を研究対象とし、これまで、規則配列構造の構築や、電子・光機能性の発現を報告されています。そして本研究では、ポルフィリンの AuIII錯体とメゾヒドロキシポルフィリンの脱プロトン体を構成ユニットとしたイオンペアを合成し、集合化および物性評価を検討されました。

この研究成果は、「Journal of the American Chemical Society」誌に掲載され、プレスリリースにも成果の概要が公開されています。

π-Stacked Ion Pairs: Tightly Associated Charged Porphyrins in Ordered Arrangement Enabling Radical-Pair Formation

Hiroki Tanaka, Yoichi Kobayashi, Ko Furukawa, Yoshinori Okayasu, Shigehisa Akine, Nobuhiro Yasuda, Hiromitsu Maeda

J. Am. Chem. Soc. 2022, 144, 47, 21710–21718

DOI: doi.org/10.1021/jacs.2c09589

研究室を主宰されている前田大光 教授より田中さんについてコメントを頂戴いたしました!

6年前の秋、むっちゃやる気のある3回生が研究室に入ってくるという噂を耳にしました。それが田中くんでした。当時、荷電ポルフィリンの超分子化学は論文にまとめられておらず、田中くんにこの化学の命運を賭けることにしました。早い段階で博士後期課程への進学を宣言し、課題に真摯に対峙する姿勢は強く印象に残っています。研究を進めていく上で壁にぶつかることももちろんあるわけですが、議論や指針提案によって解決を模索していました。今回の論文は田中くんの研究の集大成でもあり、荷電π電子系の可能性を提示できただけなく、スピン状態の制御(相互作用やシフト)の実現はイオンペアの意義(の一つ)が明らかになったことを意味し、博士取得に向けた大きな駆動力になったのではないでしょうか。人柄のよさでもラボ運営(後輩への指導)に多大に貢献し、また熱い気持ち(論文作成の段階でもこちらに勇気をくれます)を持って研究に取り組む田中くんは、企業でも周囲を巻き込みながら新しい化学を展開し、いっそう飛躍してくれると期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

われわれは、前回のスポットライトリサーチにもあるように、π電子系コアに電荷を有する荷電π電子系を研究対象とし、規則配列構造の構築や、電子・光機能性の発現を報告してきました(有機合成化学協会誌 2022, 80 (3), 232)。荷電π電子系はカチオンとアニオンが共存して存在するため、その間にはたらく相互作用により、イオンペア、電荷移動錯体、ラジカルペア、共有結合体といった多様な形態を与えることが考えられます。しかしながら、カチオンとアニオンの双方が荷電π電子系からなる分子システムの構築は容易ではなく、ペアとしての形態や物性はほとんど明らかになっていませんでした。そこで本研究では、R. G. Pearsonによって提唱されたHard and Soft Acids and Bases(HSAB)則に基づいたイオンペアメタセシスによりポルフィリンイオンの多様な組み合わせの実現に成功しました。

荷電ポルフィリンからなるイオンペアでは、結晶中での規則配列構造を実現し、溶液中では活性化カチオンと安定化アニオンが近接した積層イオンペアの形成とNMRを利用した会合定数の評価に成功しました。対照的に、活性化カチオンと活性化アニオンの間で電子移動が誘起され、ラジカルペアを形成することを明らかにしました。このとき、凍結非極性溶媒中で生成した2種類のラジカルが近接積層し、スピン–スピン相互作用により温度に依存した電子スピン状態のスイッチングが可能であることを解明しました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究で用いた活性化カチオンは、私が学部4年生のときに合成したイオン種の一つで、イオンペア集合体の構成ユニットとして導入していました(Chem. Asian J. 2019, 14, 2129)。電子求引性置換基によるカチオンの活性化は、当初から想定していましたが、論文としてまとめることに必死で、その特徴を活かした研究展開ができていませんでした。その後、安定なカウンターイオンを導入することで不安定なイオン種を単離した報告例や自身の経験から、カチオンとアニオン双方を不安定化(活性化)することで新たな物性・機能性が発現できるのではないかと考え、周辺置換基を精査した荷電ポルフィリンの設計と合成、イオンペア形成に挑戦しました。結果として、アニオンからカチオンへの1電子移動に起因したラジカルペアの形成に成功し、異種ラジカルの高密度積層を見出しました。荷電π電子系ならではの物性を解明でき、イオンペアのポテンシャルを引き出せたと満足しています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究では、π電子系カチオンとアニオンが交互積層した集合体の最小構成ユニットを、積層イオンペア(π-sip)と定義し、その物性評価を進めました。それには普段使用しない知識や装置が必要になりましたが、前田先生の人脈(その広さにいつも驚かされます)を活用させていただき解明を試みました。π-sipが電子移動して形成した積層ラジカルペア(π-srp)の構造解析では、新潟大学の古川先生にESR測定および解析をしていただき、数多くのオンラインでの議論で基礎的な点から丁寧にご教示いただきました。溶液中でラジカルペアが積層構造を形成していると解釈できたときは、電荷を失うため積層構造が解離するという予想に反したことから非常に興奮しました。また、π-sipの安定性の評価では、イオンペアの会合定数を導出する手法を1年ほど探索していましたが(滴定による評価ができないため、その点で苦労しました)、最終的に金沢大学の秋根先生にヘテロ1:1モデルを構築していただき、濃度可変NMRの化学シフト変化から解決することができました。さらに、荷電π電子系の光誘起電子移動は、立命館大学の小林先生に過渡吸収測定をしていただき、解明することができました。小林先生には、同じキャンパスで研究していることもあり、日常的に研究議論していただき、研究展開のヒントをいただいています(現在も共同研究の論文を投稿中です)。上記の先生方のご尽力のおかげで、この研究を形にすることができました。たいへん感謝しております。

Q4. 将来は化学とどう関わっていきたいですか?

4月から化学系企業で研究することが決まっており、今後もさまざまな物質に触れることのできる化学をベースに、新しいこと(分野)に挑戦していきたいと考えています。大学では、荷電π電子系の合成研究やその集合体の化学、さまざまな物性測定を通じて、未知なる科学現象との向き合い方を学びました。過去の知見をふまえながらも、独自のアイデアを盛り込むことで、自分らしい化学を楽しんでいきたいと思います。将来的には、分子の性質を理解し、それに起因する物性や機能を発揮させることにより、世の中に求められる物質を提供できるようになりたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

記事をお読みいただき、ありがとうございます。ケムステに自身の研究を掲載していただき、光栄です。本研究は、いくつかの回り道(新規イオン合成に失敗)を経たのもあり、まとめるのにかなりの時間と労力を要しました。それを頑張る原動力になったのは、研究指針を固めたときにこれが具現化したら絶対に面白い(できないとやめられない)と考えていたことかなと思います。今後も、この気持ちを忘れずに精進していきます。

最後になりますが、研究のみならず、ものの見方・考え方という面で熱心にご指導いただいた前田先生に心から感謝の意を表します。的確な助言と激励をくださった羽毛田さん、ともに切磋琢磨してきた同期の杉浦くんをはじめとする前田研メンバーに心より感謝申し上げます。

研究者の略歴

名前:田中 宏樹(たなか ひろき)

所属:立命館大学生命科学部応用化学科 超分子創製化学研究室(前田研究室) 博士後期課程3年

研究テーマ:荷電π電子系の積層構造を基盤とした電子・光物性の発現

略歴:

2018年3月 立命館大学生命科学部応用化学科 卒業

2020年3月 立命館大学大学院生命科学研究科博士前期課程 修了

2020年4月–現在 立命館大学大学院生命科学研究科博士後期課程

2020年4月–現在 日本学術振興会特別研究員DC1

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. ちっちゃい異性を好む不思議な生物の愛を仲立ちするフェロモン
  2. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  3. Dead Endを回避せよ!「全合成・極限からの一手」①
  4. C–S結合を切って芳香族を非芳香族へ
  5. ブロック共重合体で無機ナノ構造を組み立てる
  6. アメリカ企業研究員の生活②:1〜2年目の様子
  7. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  8. 少量の塩基だけでアルコールとアルキンをつなぐ

注目情報

ピックアップ記事

  1. ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方
  2. 創薬懇話会2025 in 大津
  3. トリフルオロメタンスルホン酸ランタン(III):Lanthanum(III) Trifluoromethanesulfonate
  4. フッ素のチカラで光学分割!?〜配向基はじめました〜
  5. デンドリマー / dendrimer
  6. 世界初!ラジカル1,2-リン転位
  7. フェントン反応 Fenton Reaction
  8. 高峰譲吉の「アドレナリン」107年目”名誉回復”
  9. 第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士
  10. アルゴン (argon; Ar)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP