[スポンサーリンク]

スポットライトリサーチ

荷電π電子系の近接積層に起因した電子・光物性の制御

[スポンサーリンク]

第463回のスポットライトリサーチは、立命館大学 生命科学部応用化学科 超分子創製化学研究室(前田研究室)の田中 宏樹(たなか ひろき)さんにお願いしました。

前田研究室では、新規π電子系の合成を基軸とした新概念・新機能の創出を行っており、具体的には、分子の骨格構造の設計、相互作用部位の導入による超分子集合体やナノ組織構造の構築、特定の金属イオンやアニオンに対する親和性の評価・制御、分子・集合体の電子・光物性の評価・制御に関して、各種分光法や表面測定を駆使して検証されています。
本プレスリリースの研究内容は、荷電ポルフィリンのイオンペアリングについてです。研究背景として近年、多様なπ電子系化合物が合成され、その電子状態や集合化形態を制御することにより、有機エレクトロニクス材料として利用されています。一方、前田研究室では、π電子系コアに電荷を有する荷電π電子系を研究対象とし、これまで、規則配列構造の構築や、電子・光機能性の発現を報告されています。そして本研究では、ポルフィリンの AuIII錯体とメゾヒドロキシポルフィリンの脱プロトン体を構成ユニットとしたイオンペアを合成し、集合化および物性評価を検討されました。

この研究成果は、「Journal of the American Chemical Society」誌に掲載され、プレスリリースにも成果の概要が公開されています。

π-Stacked Ion Pairs: Tightly Associated Charged Porphyrins in Ordered Arrangement Enabling Radical-Pair Formation

Hiroki Tanaka, Yoichi Kobayashi, Ko Furukawa, Yoshinori Okayasu, Shigehisa Akine, Nobuhiro Yasuda, Hiromitsu Maeda

J. Am. Chem. Soc. 2022, 144, 47, 21710–21718

DOI: doi.org/10.1021/jacs.2c09589

研究室を主宰されている前田大光 教授より田中さんについてコメントを頂戴いたしました!

6年前の秋、むっちゃやる気のある3回生が研究室に入ってくるという噂を耳にしました。それが田中くんでした。当時、荷電ポルフィリンの超分子化学は論文にまとめられておらず、田中くんにこの化学の命運を賭けることにしました。早い段階で博士後期課程への進学を宣言し、課題に真摯に対峙する姿勢は強く印象に残っています。研究を進めていく上で壁にぶつかることももちろんあるわけですが、議論や指針提案によって解決を模索していました。今回の論文は田中くんの研究の集大成でもあり、荷電π電子系の可能性を提示できただけなく、スピン状態の制御(相互作用やシフト)の実現はイオンペアの意義(の一つ)が明らかになったことを意味し、博士取得に向けた大きな駆動力になったのではないでしょうか。人柄のよさでもラボ運営(後輩への指導)に多大に貢献し、また熱い気持ち(論文作成の段階でもこちらに勇気をくれます)を持って研究に取り組む田中くんは、企業でも周囲を巻き込みながら新しい化学を展開し、いっそう飛躍してくれると期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

われわれは、前回のスポットライトリサーチにもあるように、π電子系コアに電荷を有する荷電π電子系を研究対象とし、規則配列構造の構築や、電子・光機能性の発現を報告してきました(有機合成化学協会誌 2022, 80 (3), 232)。荷電π電子系はカチオンとアニオンが共存して存在するため、その間にはたらく相互作用により、イオンペア、電荷移動錯体、ラジカルペア、共有結合体といった多様な形態を与えることが考えられます。しかしながら、カチオンとアニオンの双方が荷電π電子系からなる分子システムの構築は容易ではなく、ペアとしての形態や物性はほとんど明らかになっていませんでした。そこで本研究では、R. G. Pearsonによって提唱されたHard and Soft Acids and Bases(HSAB)則に基づいたイオンペアメタセシスによりポルフィリンイオンの多様な組み合わせの実現に成功しました。

荷電ポルフィリンからなるイオンペアでは、結晶中での規則配列構造を実現し、溶液中では活性化カチオンと安定化アニオンが近接した積層イオンペアの形成とNMRを利用した会合定数の評価に成功しました。対照的に、活性化カチオンと活性化アニオンの間で電子移動が誘起され、ラジカルペアを形成することを明らかにしました。このとき、凍結非極性溶媒中で生成した2種類のラジカルが近接積層し、スピン–スピン相互作用により温度に依存した電子スピン状態のスイッチングが可能であることを解明しました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究で用いた活性化カチオンは、私が学部4年生のときに合成したイオン種の一つで、イオンペア集合体の構成ユニットとして導入していました(Chem. Asian J. 2019, 14, 2129)。電子求引性置換基によるカチオンの活性化は、当初から想定していましたが、論文としてまとめることに必死で、その特徴を活かした研究展開ができていませんでした。その後、安定なカウンターイオンを導入することで不安定なイオン種を単離した報告例や自身の経験から、カチオンとアニオン双方を不安定化(活性化)することで新たな物性・機能性が発現できるのではないかと考え、周辺置換基を精査した荷電ポルフィリンの設計と合成、イオンペア形成に挑戦しました。結果として、アニオンからカチオンへの1電子移動に起因したラジカルペアの形成に成功し、異種ラジカルの高密度積層を見出しました。荷電π電子系ならではの物性を解明でき、イオンペアのポテンシャルを引き出せたと満足しています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究では、π電子系カチオンとアニオンが交互積層した集合体の最小構成ユニットを、積層イオンペア(π-sip)と定義し、その物性評価を進めました。それには普段使用しない知識や装置が必要になりましたが、前田先生の人脈(その広さにいつも驚かされます)を活用させていただき解明を試みました。π-sipが電子移動して形成した積層ラジカルペア(π-srp)の構造解析では、新潟大学の古川先生にESR測定および解析をしていただき、数多くのオンラインでの議論で基礎的な点から丁寧にご教示いただきました。溶液中でラジカルペアが積層構造を形成していると解釈できたときは、電荷を失うため積層構造が解離するという予想に反したことから非常に興奮しました。また、π-sipの安定性の評価では、イオンペアの会合定数を導出する手法を1年ほど探索していましたが(滴定による評価ができないため、その点で苦労しました)、最終的に金沢大学の秋根先生にヘテロ1:1モデルを構築していただき、濃度可変NMRの化学シフト変化から解決することができました。さらに、荷電π電子系の光誘起電子移動は、立命館大学の小林先生に過渡吸収測定をしていただき、解明することができました。小林先生には、同じキャンパスで研究していることもあり、日常的に研究議論していただき、研究展開のヒントをいただいています(現在も共同研究の論文を投稿中です)。上記の先生方のご尽力のおかげで、この研究を形にすることができました。たいへん感謝しております。

Q4. 将来は化学とどう関わっていきたいですか?

4月から化学系企業で研究することが決まっており、今後もさまざまな物質に触れることのできる化学をベースに、新しいこと(分野)に挑戦していきたいと考えています。大学では、荷電π電子系の合成研究やその集合体の化学、さまざまな物性測定を通じて、未知なる科学現象との向き合い方を学びました。過去の知見をふまえながらも、独自のアイデアを盛り込むことで、自分らしい化学を楽しんでいきたいと思います。将来的には、分子の性質を理解し、それに起因する物性や機能を発揮させることにより、世の中に求められる物質を提供できるようになりたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

記事をお読みいただき、ありがとうございます。ケムステに自身の研究を掲載していただき、光栄です。本研究は、いくつかの回り道(新規イオン合成に失敗)を経たのもあり、まとめるのにかなりの時間と労力を要しました。それを頑張る原動力になったのは、研究指針を固めたときにこれが具現化したら絶対に面白い(できないとやめられない)と考えていたことかなと思います。今後も、この気持ちを忘れずに精進していきます。

最後になりますが、研究のみならず、ものの見方・考え方という面で熱心にご指導いただいた前田先生に心から感謝の意を表します。的確な助言と激励をくださった羽毛田さん、ともに切磋琢磨してきた同期の杉浦くんをはじめとする前田研メンバーに心より感謝申し上げます。

研究者の略歴

名前:田中 宏樹(たなか ひろき)

所属:立命館大学生命科学部応用化学科 超分子創製化学研究室(前田研究室) 博士後期課程3年

研究テーマ:荷電π電子系の積層構造を基盤とした電子・光物性の発現

略歴:

2018年3月 立命館大学生命科学部応用化学科 卒業

2020年3月 立命館大学大学院生命科学研究科博士前期課程 修了

2020年4月–現在 立命館大学大学院生命科学研究科博士後期課程

2020年4月–現在 日本学術振興会特別研究員DC1

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 「mihub」を活用したマテリアルズインフォマティクスの実践 -…
  2. Carl Boschの人生 その4
  3. FLPとなる2種類の触媒を用いたアミド・エステルの触媒的α-重水…
  4. 【四国化成ホールディングス】新卒採用情報(2027卒)
  5. 半導体ナノ結晶に配位した芳香族系有機化合物が可視光線で可逆的に脱…
  6. 全フッ素置換シクロプロピル化試薬の開発
  7. セルロース由来バイオ燃料にイオン液体が救世主!?
  8. ニトリル手袋は有機溶媒に弱い?

注目情報

ピックアップ記事

  1. 第5回ICReDD国際シンポジウム開催のお知らせ
  2. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン R2
  3. 「高校化学グランドコンテスト」が 芝浦工業大学の主催で2年ぶりに開催
  4. 化学者のためのエレクトロニクス入門⑤ ~ディスプレイ分野などで活躍する化学メーカー編~~
  5. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応
  6. サリンを検出可能な有機化合物
  7. ノーベル化学賞メダルと科学者の仕事
  8. 低投資で効率的な英語学習~有用な教材は身近にある!
  9. 関東化学2019年採用情報
  10. SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP