[スポンサーリンク]

N

野依不斉水素化反応 Noyori Asymmetric Hydrogenation

[スポンサーリンク]

概要

Ru(II)-BINAP触媒および水素を用いて、オレフィンもしくはケトンの不斉還元を行う方法。

Ru(OAc)2(binap)によるオレフィンの還元、およびRuCl2(binap)(dmf)n触媒によるケトンの還元の場合には、近傍にエステル・アミド・カルボン酸・アルコールなどの配位性官能基の存在が必須である。

単純ケトン(配位性官能基を持たないケトン)の触媒的不斉還元法は、過去にはCBS還元以外に一般性の高い方法が存在していなかった。野依らはRu(II)-BINAP-キラルジアミン錯体が単純ケトンの不斉還元触媒として働くことを見いだした。

本法ではオレフィン共存下にケトンを優先的に還元させることが出来る。一般に触媒性能はきわめて高く、基質によっては触媒回転数(TON)が100,000近くに達する。
基質一般性は広く、水素を還元剤として用いることが出来るクリーンかつ高アトムエコノミーの反応であり、工業プロセスにも応用されている。

本法の開発による触媒的不斉還元法への貢献のため、名大の野依良治教授は2001年ノーベル化学賞を受賞している。

基本文献

  • Noyori, R. Asymmetric Catalysis in Organic Synthesis , Ojima, I. Ed.; John Wiley & Sons; New York, 1994, chapter 2.
  • Noyori, R..; Ohkuma, T. Angew. Chem., Int. Ed. 200140, 40. [abstract]
  • 大熊 毅, 有機合成化学協会誌 2001, 59, 446.
  • 塚本真幸, 北村雅人, 有機合成化学協会誌 2005, 63, 899.

<Nobel Lectures>

  • Knowles, W. S. Angew. Chem. Int. Ed. 200141, 1998. [abstract]
  • Noyori, R. Angew. Chem. Int. Ed. 200141, 2008. [abstract]

 

反応機構

Ruの価数は反応を通じて2価(モノヒドリド機構)であり、この点はRh(I)←→Rh(III)で回転するロジウム触媒系と異なっている。
noyori_red_4.gif
noyori_red_5.gif
Ru(II)-BINAP-キラルジアミン系の触媒遷移状態においては、アミン上の水素原子が基質固定に重要な役割を果たすと考えられている。(野依不斉水素移動反応も参照)

 

反応例

noyori_red_9.gif
noyori_red_6.gif
noyori_red_8.gif

実験手順

シトロネロールの合成[1] noyori_red_7.gif

実験のコツ・テクニック

 

参考文献

[1] Org. Synth. 1993, 72, 74.

 

関連反応

 

関連書籍

 

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. 玉尾・フレミング酸化 Tamao-Fleming Oxidati…
  2. エタール反応 Etard Reaction
  3. ソープ・インゴールド効果 Thorpe-Ingold Effec…
  4. ボロン酸触媒によるアミド形成 Amide Formation C…
  5. メーヤワイン アリール化反応 Meerwein Arylatio…
  6. ハウザー・クラウス環形成反応 Hauser-Kraus Annu…
  7. ニトロンの1,3-双極子付加環化 1,3-Dipolar Cyc…
  8. ヒドロシリル化反応 Hydrosilylation

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 牛糞からプラスチック原料 水素とベンゼン、北大が成功
  2. リチャード・ヘック Richard F. Heck
  3. ペタシス・フェリエ転位 Petasis-Ferrier Rearrangement
  4. パッセリーニ反応 Passerini Reaction
  5. クルチウス転位 Curtius Rearrangement
  6. Greene’s Protective Groups in Organic Synthesis
  7. ノーベル化学賞:下村脩・米ボストン大名誉教授ら3博士に
  8. Arborisidineの初の全合成
  9. マーヴィン・カルザース Marvin H. Caruthers
  10. 生涯最高の失敗

関連商品

注目情報

注目情報

最新記事

第38回「分子組織化の多様な側面を理解する」Neil Champness教授

長らく更新が止まっていましたが、海外化学者インタビュー再開しました。Nature Chemistry…

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

“つける“と“はがす“の新技術―分子接合と表面制御

お申込み・詳細はこちら日程2020年1月9日(木)・10日(金)定員20名  先着順…

【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~

日産化学は、コア技術である「精密有機合成」や「生物評価」を活かして自社独自開発の…

モノクローナル抗体を用いた人工金属酵素によるエナンチオ選択的フリーデル・クラフツ反応

第234回のスポットライトリサーチは、大阪大学大学院理学研究科・安達 琢真さんにお願いしました。…

α,β-不飽和イミンのγ-炭素原子の不斉マイケル付加反応

α,β-不飽和イミンのγ-炭素原子のエナールへのエナンチオ選択的マイケル付加反応が開発された。新規環…

Chem-Station Twitter

PAGE TOP