[スポンサーリンク]

odos 有機反応データベース

カルボニル基の保護 Protection of Carbonyl Group

[スポンサーリンク]

 

概要

カルボニル化合物の保護目的には、アセタールとして保護することが一般的。保護は酸性条件下行われる。還元条件、塩基性条件、求核剤、非酸性酸化剤には安定。

基本文献

・Daignault, R. A.; Eliel, E. L. Org. Synth. 19735, 303.

 

反応機構

アセタール保護反応は可逆であり、反応を完結させるためにはアルコールを過剰に用いたり、副生する水を除去する工夫が必要となる。
PG_carbonyl_6.gif
カルボニルの反応性の順列はおよそ以下のとおり。
PG_carbonyl_8.gif

反応例

Saxitoxinの合成[1]:ハードルイス酸もしくはブレンステッド酸の親和性・活性化能はO>Sである。これを利用すれば、O-アセタールからS-アセタールへと一段階で掛け替えが可能。
PG_carbonyl_3.gif
野依法[2]:TMSOTfを触媒として、シリルエーテルとカルボニル化合物を反応させると、アセタール・ケタールが高収率で得られる。極低温でも反応が進行する強力な条件。副生するジシロキサン(TMSOTMS)が安定で反応性に乏しいため、逆反応は起こらず、速度論的支配下で保護が行える。
PG_carbonyl_5.gif

大寺触媒
を用いる方法[3]:以下に示すジスタノキサン触媒は強酸に不安定な基質にも用いることができる。穏和なルイス酸としてカルボニルを活性化するとともに、スズアルコキシドを生成し求核能を高めるという共同作用を行っている。また、脱水装置も不要である。
PG_carbonyl_4.gif
アルデヒド存在下におけるケトンの選択的アセタール化[4]:ジメチルスルフィド-TMSOTfで処理したあとに野依法を行う方法が知られている。
PG_carbonyl_9.gif

実験手順

エチレングリコールアセタール保護[5] PG_carbonyl_7.gif

実験のコツ・テクニック

もっともポピュラーな保護基を以下に挙げる。6員環アセタールは5員環アセタールよりも加水分解速度が速い。
PG_carbonyl_2.gif
※チオアセタールの脱保護は主に次の3通りが知られる。①メチル化→加水分解 ②酸化(超原子価ヨウ素など)→加水分解 ③水銀(II)による加水分解

 

参考文献

[1] Tanino, H.; Nakata, T.; Kaneko, T.; Kishi, Y. J. Am. Chem.
Soc.
1977, 99, 2818. DOI: 10.1021/ja00450a079
[2] Noyori, R.; Murata, S.; Suzuki, M. Tetrahedron 1981,
37, 3899. doi:10.1016/S0040-4020(01)93263-6

[3] Otera, J.; Dan-oh, N.; Nozaki, H. Tetrahedron 1992,
48, 1449. doi:10.1016/S0040-4020(01)92233-1
[4] Kim, S.; Kim, Y. G.; Kim, D. Tetrahedron Lett. 1992,
33, 2565. doi:10.1016/S0040-4039(00)92243-3
[5] Daignault, R. A.; Eliel, E. L. Org. Synth. 1973,
5, 303.

 

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. 均一系水素化 Homogeneous Hydrogenaton
  2. オレフィンメタセシス Olefin Metathesis
  3. コーンフォース転位 Cornforth Rearrangemen…
  4. サクセナ・エヴァンス還元 Saksena-Evans Reduc…
  5. 過酸による求核的エポキシ化 Nucleophilic Epoxi…
  6. ハートウィグ ヒドロアミノ化反応 Hartwig Hydroam…
  7. アセト酢酸エステル/マロン酸エステル合成 Acetoacetic…
  8. ザンドマイヤー反応 Sandmeyer Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アニオンUV硬化に有用な光塩基発生剤(PBG)
  2. 第七回 巧みに非共有結合相互作用をつかうー Vince Rotello教授
  3. ウィリアム・ノールズ William S. Knowles
  4. 二酸化炭素をはきだして♪
  5. アズレンの蒼い旅路
  6. SNS予想で盛り上がれ!2020年ノーベル化学賞は誰の手に?
  7. 「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた
  8. 【書評】現場で役に立つ!臨床医薬品化学
  9. チャド・マーキン Chad A. Mirkin
  10. 未来を拓く多彩な色素材料

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

Let’s Make Wave , Make World. −マイクロ波で!プロセス革新ワークショップ −

<内容>マイクロ波のプロと次世代プロセスへの転換に向けた勘所を押さえ、未来に向けたイノベーシ…

ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発

第566回のスポットライトリサーチは、京都大学化学研究所 物質創成化学研究系 有機元素化学領域 (山…

韮山反射炉に行ってみた

韮山反射炉は1857年に完成した静岡県伊豆の国市にある国指定の史跡(史跡名勝記念物)で、2015年に…

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた

bergです。この度は2023年9月8日(金)に慶応義塾大学 矢上キャンパスにて開催された西林教授の…

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP