[スポンサーリンク]

R

分子内ラジカル環化 Intramolecular Radical Cyclization

[スポンサーリンク]

 

概要

ハロゲン(もしくはカルコゲニド化合物)とラジカル開始剤から生成する炭素ラジカルは求核的性質を帯びる。分子内の適切な位置にα,β-不飽和カルボニル化合物やアルケン、アルキンが存在すれば反応を起こし、環化成績体を与える。

特にハロアセタールを合成してからラジカル環化を行う手法をUeno-Stork環化と呼ぶ。

 

基本文献

  • Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. Am. Chem. Soc. 1982, 104, 5564. DOI: 10.1021/ja00384a082
  • Stork, G.; Mook, R.Jr.; Biller, S. A.; Rychnovsky, S. A. J. Am. Chem. Soc. 1983, 105, 3741. DOI: 10.1021/ja00349a082

<review>

 

反応機構

多くの炭素ラジカルは求核的性質を帯びるため、電子不足オレフィンに対する環化が起こりやすい。radical_cycle_8.gif

5-exo環化は6-endo環化のおよそ5倍速く、ほとんどが5-exo選択的に進行する。

5-exo環化の立体選択性に関しては、Beckwithモデルにて説明される。ただし極性官能基やヘテロ原子が置換するばあいはこのモデルから外れることが多い。(参考:Aust. J. Chem. 1983, 36, 545.)

radical_cycle_9

反応例

混み合った位置の炭素-炭素結合導入に威力を発揮する。
12a-deoxytetracyclineの合成[1]: Ueno-Stork環化を効果的に活用している。
radical_cycle_1.gif
Merrilactone Aの合成[2] radical_cycle_2.gif
Merrilactone Aの合成[3] radical_cycle_3.gif
Salinosporamideの合成[4]:ケイ素部を後に玉尾酸化でアルコールに変換。CH2OHユニットの導入法の一つ。
radical_cycle_4.gif
Stephacidin Bの合成[5]:Jacksonらによって開発されたアシルラジカル前駆体[6]を用いている。

radical_cycle_5.gif
(-)-Cyanthiwigin Fの全合成[7]:アルデヒド-オレフィン間のラジカル環化[8]が鍵反応。反応は完全な立体選択性で進行する。
radical_cycle_6.gif

タンデム環化で一挙に多数の環を構築出来ることも特長。[9]

radical_cycle_10

実験手順

 

実験のコツ・テクニック

ラジカル開始剤としては過酸化ベンゾイル(BzOOBz)、アゾビスイソブチロニトリル(AIBN)、Et3B/O2などが用いられる。特にEt3B/O2条件は、低温でラジカルを生成させることができるため、複雑化合物合成において有用性が高い。VA-061(半減期温度61℃)やVA-044(半減期温度44℃)といった水溶性ラジカル開始剤も最近ではポピュラーになりつつある。

参考文献

[1] Stork, G.; La Clair, J. J.; Spargo, P.; Nargund, R. P.; Totah, N.. J. Am. Chem. Soc. 1996, 118, 5304.DOI: 10.1021/ja960434n
[2] (a) Birman, V. B.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 2080.DOI: 10.1021/ja012495d (b) Meng, Z.; Danishefsky, S. J. Angew. Chem. Int. Ed. 200544, 1511. doi:10.1002/anie.200462509
[3] (a) Inoue, M.; Sato, T.; Hirama, M. J. Am. Chem. Soc. 2003, 125, 10772. DOI: 10.1021/ja036587+ (b) Inoue, M.; Sato, T.; Hirama, M. Angew. Chem. Int. Ed. 2006, 45, 4843. doi:10.1002/anie.200601358 (c) Inoue, M.; Lee, N.; Kasuya, S.; Sato, T.; Hirama, M.; Moriyama, M.; Fukuyama, Y. J. Org. Chem. 2007, 72, 3065. DOI: 10.1021/jo0700474
[4] Corey, E. J. et al. J. Am. Chem. Soc. 2004126, 6230. DOI: 10.1021/ja048613p
[5] Herzon, S. B.; Myers, A. G. J. Am. Chem. Soc. 2005127, 5342. DOI: 10.1021/ja0510616
[6] (a)Jacson, L. V.; Walton, J. C. Chem. Commun. 2000, 2327. DOI: 10.1039/b007454n (b) Bella, A. F.; Jacson, L. V.; Walton, J. C.Org. Biomol. Chem. 2004, 2, 421. DOI: 10.1039/b313932h
[7] Enquist, J. A.; Stoltz, B. M. Nature 2008453, 1228. doi:10.1038/nature07046
[8] Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. J. Org. Chem. 2005, 70, 681. DOI: 10.1021/jo048275a
[9] Curran, D. P; Chen, M.-H. Tetrahedron Lett. 1985, 26, 4991. doi:10.1016/S0040-4039(01)80834-0

関連反応

 

関連書籍

[amazonjs asin=”0080443745″ locale=”JP” title=”Advanced Free Radical Reactions for Organic Synthesis”]

外部リンク

Radical Cyclization – Wikipedia

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 還元的脱硫反応 Reductive Desulfurizatio…
  2. ランバーグ・バックランド転位 Ramberg-Backlund …
  3. リッター反応 Ritter Reaction
  4. アルコールのアルカンへの還元 Reduction from Al…
  5. リード反応 Reed Reaction
  6. レギッツジアゾ転移 Regitz Diazo Transfer
  7. レフォルマトスキー反応 Reformatsky Reaction…
  8. ライセルト反応 Reissert Reaction

注目情報

ピックアップ記事

  1. 2009年ノーベル賞受賞者会議:会議の一部始終をオンラインで
  2. 光触媒でエステルを多電子還元する
  3. 第10回 ナノ構造/超分子を操る Jonathan Steed教授
  4. 中分子創薬に挑む中外製薬
  5. クオラムセンシング Quorum Sensing
  6. 人工プレゼン動画をつくってみた
  7. 細孔内単分子ポリシラン鎖の特性解明
  8. 誤解してない? 電子の軌道は”軌道”ではない
  9. 旭硝子が新中期計画、液晶・PDPガラス基板事業に注力
  10. クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発見―薬剤耐性菌の出現を抑える感染症治療薬への応用に期待―

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP