[スポンサーリンク]

R

分子内ラジカル環化 Intramolecular Radical Cyclization

[スポンサーリンク]

 

概要

ハロゲン(もしくはカルコゲニド化合物)とラジカル開始剤から生成する炭素ラジカルは求核的性質を帯びる。分子内の適切な位置にα,β-不飽和カルボニル化合物やアルケン、アルキンが存在すれば反応を起こし、環化成績体を与える。

特にハロアセタールを合成してからラジカル環化を行う手法をUeno-Stork環化と呼ぶ。

 

基本文献

  • Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. Am. Chem. Soc. 1982, 104, 5564. DOI: 10.1021/ja00384a082
  • Stork, G.; Mook, R.Jr.; Biller, S. A.; Rychnovsky, S. A. J. Am. Chem. Soc. 1983, 105, 3741. DOI: 10.1021/ja00349a082

<review>

 

反応機構

多くの炭素ラジカルは求核的性質を帯びるため、電子不足オレフィンに対する環化が起こりやすい。radical_cycle_8.gif

5-exo環化は6-endo環化のおよそ5倍速く、ほとんどが5-exo選択的に進行する。

5-exo環化の立体選択性に関しては、Beckwithモデルにて説明される。ただし極性官能基やヘテロ原子が置換するばあいはこのモデルから外れることが多い。(参考:Aust. J. Chem. 1983, 36, 545.)

radical_cycle_9

反応例

混み合った位置の炭素-炭素結合導入に威力を発揮する。
12a-deoxytetracyclineの合成[1]: Ueno-Stork環化を効果的に活用している。
radical_cycle_1.gif
Merrilactone Aの合成[2] radical_cycle_2.gif
Merrilactone Aの合成[3] radical_cycle_3.gif
Salinosporamideの合成[4]:ケイ素部を後に玉尾酸化でアルコールに変換。CH2OHユニットの導入法の一つ。
radical_cycle_4.gif
Stephacidin Bの合成[5]:Jacksonらによって開発されたアシルラジカル前駆体[6]を用いている。

radical_cycle_5.gif
(-)-Cyanthiwigin Fの全合成[7]:アルデヒド-オレフィン間のラジカル環化[8]が鍵反応。反応は完全な立体選択性で進行する。
radical_cycle_6.gif

タンデム環化で一挙に多数の環を構築出来ることも特長。[9]

radical_cycle_10

実験手順

 

実験のコツ・テクニック

ラジカル開始剤としては過酸化ベンゾイル(BzOOBz)、アゾビスイソブチロニトリル(AIBN)、Et3B/O2などが用いられる。特にEt3B/O2条件は、低温でラジカルを生成させることができるため、複雑化合物合成において有用性が高い。VA-061(半減期温度61℃)やVA-044(半減期温度44℃)といった水溶性ラジカル開始剤も最近ではポピュラーになりつつある。

参考文献

[1] Stork, G.; La Clair, J. J.; Spargo, P.; Nargund, R. P.; Totah, N.. J. Am. Chem. Soc. 1996, 118, 5304.DOI: 10.1021/ja960434n
[2] (a) Birman, V. B.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 2080.DOI: 10.1021/ja012495d (b) Meng, Z.; Danishefsky, S. J. Angew. Chem. Int. Ed. 200544, 1511. doi:10.1002/anie.200462509
[3] (a) Inoue, M.; Sato, T.; Hirama, M. J. Am. Chem. Soc. 2003, 125, 10772. DOI: 10.1021/ja036587+ (b) Inoue, M.; Sato, T.; Hirama, M. Angew. Chem. Int. Ed. 2006, 45, 4843. doi:10.1002/anie.200601358 (c) Inoue, M.; Lee, N.; Kasuya, S.; Sato, T.; Hirama, M.; Moriyama, M.; Fukuyama, Y. J. Org. Chem. 2007, 72, 3065. DOI: 10.1021/jo0700474
[4] Corey, E. J. et al. J. Am. Chem. Soc. 2004126, 6230. DOI: 10.1021/ja048613p
[5] Herzon, S. B.; Myers, A. G. J. Am. Chem. Soc. 2005127, 5342. DOI: 10.1021/ja0510616
[6] (a)Jacson, L. V.; Walton, J. C. Chem. Commun. 2000, 2327. DOI: 10.1039/b007454n (b) Bella, A. F.; Jacson, L. V.; Walton, J. C.Org. Biomol. Chem. 2004, 2, 421. DOI: 10.1039/b313932h
[7] Enquist, J. A.; Stoltz, B. M. Nature 2008453, 1228. doi:10.1038/nature07046
[8] Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. J. Org. Chem. 2005, 70, 681. DOI: 10.1021/jo048275a
[9] Curran, D. P; Chen, M.-H. Tetrahedron Lett. 1985, 26, 4991. doi:10.1016/S0040-4039(01)80834-0

関連反応

 

関連書籍

[amazonjs asin=”0080443745″ locale=”JP” title=”Advanced Free Radical Reactions for Organic Synthesis”]

外部リンク

Radical Cyclization – Wikipedia

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ルチッカ大員環合成 Ruzicka Large Ring Sy…
  2. アルコールのアルカンへの還元 Reduction from Al…
  3. ルボトム酸化 Rubottom Oxidation
  4. ロゼムンド・リンドセー ポルフィリン合成 Rothemund-L…
  5. 還元的脱硫反応 Reductive Desulfurizatio…
  6. リード反応 Reed Reaction
  7. ライマー・チーマン反応 Reimer-Tiemann React…
  8. ローゼンムント・フォンブラウン反応 Rosenmund-von …

注目情報

ピックアップ記事

  1. 水分解 water-splitting
  2. 三共と第一製薬が正式に合併契約締結
  3. コロナウイルスCOVID-19による化学研究への影響を最小限にするために
  4. シェールガスにかかわる化学物質について
  5. 希望する研究開発職への転職を実現 「短い在籍期間」の不利を克服したビジョンマッチング
  6. 「低分子医薬品とタンパク質の相互作用の研究」Harvard大学 Woo研より
  7. CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】
  8. 新しい糖尿病治療薬認可へ~人体機能高めるタイプから吸入式まで
  9. モウンジ・バウェンディ Moungi G Bawendi
  10. 5年で57億円かかるエルゼビアの論文閲覧システムの契約交渉で大学側が値下げを要求

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP