[スポンサーリンク]

odos 有機反応データベース

トリプトファン選択的タンパク質修飾反応 Trp-Selective Protein Modification

[スポンサーリンク]

トリプトファン(Tryptophan, Trp)は90%のタンパク質中に含まれる疎水性アミノ酸である。一次配列中の存在比率および表面露出数は、天然アミノ酸20種の中でも最低である。また、その疎水性側鎖(インドール)は電荷を持たないため、修飾がタンパク質の物性に影響を与えづらい。このような特徴から、Trpは化学・位置選択的修飾反応の標的として魅力がある。

チロシンと同様、電子豊富な芳香環側鎖を持つため、その特性を利用する戦略にて選択的修飾法の開発が検討されてきた。しかしながら、重金属の使用や強い化学条件の使用がほとんどの既報例で要請される都合、実用観点では改善の余地が多い反応形式の一つでもある。

基本文献

<Chemist’s Guide>

反応例

電子豊富なインドールC2・C3位を狙う戦略が基本である。

C2位の反応条件は多くの場合、遷移金属触媒の使用を必要とする。とりわけ金属カルベノイド種を経る条件[1]は、しばしばN-H結合と反応したり、他残基との交差反応性も問題になりうる。

金触媒を用いるC-H活性化触媒法の応用[2]。TrpのN-H結合を適切に保護したり、小サイズのペプチドに実施する場合には、マンガン触媒[3]、パラジウム触媒[4]、ルテニウム触媒[5]でも同形式の反応が行えることが実証されている。

C3位での反応条件は求電子的条件が必要となるが、他アミノ酸残基との交差反応性が懸念される都合、事例は少ない。金属フリーな条件で行えるTrp選択的修飾法が開発されている[6]。

UV光照射でテトラゾールから生成する1,3-双極子との環化によっても修飾が行える[7]。

強酸性条件が必要だが、ペプチドレベルでは大環状環化への応用も検討されている[8]。

参考文献

  1. (a) Antos, J. M.; Francis, M. B. J. Am. Chem. Soc. 2004, 126, 10256. DOI: 10.1021/ja047272c (b) Antos, J. M.; McFarland, J. M.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2009, 131, 6301. DOI: 10.1021/ja900094h (c) Popp, B. V.; Ball, Z. T. J. Am. Chem. Soc. 2010, 132, 6660. DOI: 10.1021/ja101456c (d) Poppa, B. V.; Ball, Z. T. Chem. Sci. 2011, 2, 690. doi: 10.1039/C0SC00564A 
  2. (a) Hansen, M. B.; Hubalek, F.; Skrydstrup, T.; Hoeg-Jensen, T. Chem. Eur. J. 2016, 22, 1572. DOI: 10.1002/chem.201504462 (b) Tolnai, J. G.; Brand, J. P.; Waser, J. Beilstein J. Org. Chem. 2016, 12, 745. doi:10.3762/bjoc.12.74
  3. Ruan, Z.; Sauermann, N.; Manoni, E.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 3172. DOI: 10.1002/anie.201611118
  4. (a) Ruiz-Rodriguez, J.; Albericio, F.; Lavilla, R. Chem. Eur. J. 2010, 16, 1124. DOI: 10.1002/chem.200902676 (b) Reay, A. J.; Williams, T. J.; Fairlamb, I. J. S. Org. Biomol. Chem. 2015, 13, 8298. doi: 10.1039/C5OB01174D
  5. Schischko, A.; Ren, H.; Kaplaneris, N.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 1576. doi:10.1002/anie.201609631
  6. Seki, Y.; Ishiyama, T.; Sasaki, D.; Abe, J.; Sohma, Y.; Oisaki, K.; Kanai, M. J. Am. Chem. Soc. 2016, 138, 10798. doi:10.1021/jacs.6b06692
  7. Siti, W.; Khan, A. K.; de Hoog, H. P.; Liedberg, B.; Nallani, M. Org. Biomol. Chem. 2015, 13, 3202. doi:10.1039/C4OB02025A
  8. Rose, T. E.; Curtin, B. H.; Lawson, K. V.; Simon, A.; Houk, K. N. Harran, P. G. Chem. Sci. 2016, 7, 4158. DOI: 10.1039/c5sc04612b

関連書籍

ケムステ関連記事

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. コーリー・ウィンターオレフィン合成 Corey-Winter O…
  2. 網井トリフルオロメチル化 Amii Trifluoromethy…
  3. 有機亜鉛試薬 Organozinc Reagent
  4. ボイヤー・シュミット・オーブ転位 Boyer-Schmidt-A…
  5. マイゼンハイマー転位 Meisenheimer Rearrang…
  6. パッセリーニ反応 Passerini Reaction
  7. クメン法 Cumene Process
  8. ニコラス反応 Nicholas Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ベンジル位アセタールを選択的に酸素酸化する不均一系触媒
  2. Small Molecule Medicinal Chemistry -Strategies and Technologies-
  3. 名大・山本名誉教授に 「テトラへドロン賞」 有機化学分野で業績
  4. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  5. リチャード・シュロック Richard R. Schrock
  6. 有機・高分子関連技術が一堂に会す「オルガテクノ2005」開催へ
  7. 第35回 生物への応用を志向した新しいナノマテリアル合成― Mark Green教授
  8. シュテルン-フォルマー式 Stern-Volmer equation
  9. ノーマン・アリンジャー Norman A. Allinger
  10. 科学は探究心を与え続けてくれるもの:2016 ロレアル–ユネスコ女性科学者 日本奨励賞

関連商品

注目情報

注目情報

最新記事

光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功

第244回のスポットライトリサーチは、北海道大学大学院総合化学院・林 裕貴さんにお願いしました。…

続・企業の研究を通して感じたこと

自分は、2014年に「企業の研究を通して感じたこと」という記事を執筆しましたが、それから5年が経ち、…

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

Chem-Station Twitter

PAGE TOP