[スポンサーリンク]

odos 有機反応データベース

トリプトファン選択的タンパク質修飾反応 Trp-Selective Protein Modification

[スポンサーリンク]

トリプトファン(Tryptophan, Trp)は90%のタンパク質中に含まれる疎水性アミノ酸である。一次配列中の存在比率および表面露出数は、天然アミノ酸20種の中でも最低である。また、その疎水性側鎖(インドール)は電荷を持たないため、修飾がタンパク質の物性に影響を与えづらい。このような特徴から、Trpは化学・位置選択的修飾反応の標的として魅力がある。

チロシンと同様、電子豊富な芳香環側鎖を持つため、その特性を利用する戦略にて選択的修飾法の開発が検討されてきた。しかしながら、重金属の使用や強い化学条件の使用がほとんどの既報例で要請される都合、実用観点では改善の余地が多い反応形式の一つでもある。

基本文献

<Chemist’s Guide>

反応例

電子豊富なインドールC2・C3位を狙う戦略が基本である。

C2位の反応条件は多くの場合、遷移金属触媒の使用を必要とする。とりわけ金属カルベノイド種を経る条件[1]は、しばしばN-H結合と反応したり、他残基との交差反応性も問題になりうる。

金触媒を用いるC-H活性化触媒法の応用[2]。TrpのN-H結合を適切に保護したり、小サイズのペプチドに実施する場合には、マンガン触媒[3]、パラジウム触媒[4]、ルテニウム触媒[5]でも同形式の反応が行えることが実証されている。

C3位での反応条件は求電子的条件が必要となるが、他アミノ酸残基との交差反応性が懸念される都合、事例は少ない。金属フリーな条件で行えるTrp選択的修飾法が開発されている[6]。

UV光照射でテトラゾールから生成する1,3-双極子との環化によっても修飾が行える[7]。

強酸性条件が必要だが、ペプチドレベルでは大環状環化への応用も検討されている[8]。

参考文献

  1. (a) Antos, J. M.; Francis, M. B. J. Am. Chem. Soc. 2004, 126, 10256. DOI: 10.1021/ja047272c (b) Antos, J. M.; McFarland, J. M.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2009, 131, 6301. DOI: 10.1021/ja900094h (c) Popp, B. V.; Ball, Z. T. J. Am. Chem. Soc. 2010, 132, 6660. DOI: 10.1021/ja101456c (d) Poppa, B. V.; Ball, Z. T. Chem. Sci. 2011, 2, 690. doi: 10.1039/C0SC00564A 
  2. (a) Hansen, M. B.; Hubalek, F.; Skrydstrup, T.; Hoeg-Jensen, T. Chem. Eur. J. 2016, 22, 1572. DOI: 10.1002/chem.201504462 (b) Tolnai, J. G.; Brand, J. P.; Waser, J. Beilstein J. Org. Chem. 2016, 12, 745. doi:10.3762/bjoc.12.74
  3. Ruan, Z.; Sauermann, N.; Manoni, E.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 3172. DOI: 10.1002/anie.201611118
  4. (a) Ruiz-Rodriguez, J.; Albericio, F.; Lavilla, R. Chem. Eur. J. 2010, 16, 1124. DOI: 10.1002/chem.200902676 (b) Reay, A. J.; Williams, T. J.; Fairlamb, I. J. S. Org. Biomol. Chem. 2015, 13, 8298. doi: 10.1039/C5OB01174D
  5. Schischko, A.; Ren, H.; Kaplaneris, N.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 1576. doi:10.1002/anie.201609631
  6. Seki, Y.; Ishiyama, T.; Sasaki, D.; Abe, J.; Sohma, Y.; Oisaki, K.; Kanai, M. J. Am. Chem. Soc. 2016, 138, 10798. doi:10.1021/jacs.6b06692
  7. Siti, W.; Khan, A. K.; de Hoog, H. P.; Liedberg, B.; Nallani, M. Org. Biomol. Chem. 2015, 13, 3202. doi:10.1039/C4OB02025A
  8. Rose, T. E.; Curtin, B. H.; Lawson, K. V.; Simon, A.; Houk, K. N. Harran, P. G. Chem. Sci. 2016, 7, 4158. DOI: 10.1039/c5sc04612b

関連書籍

ケムステ関連記事

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction…
  2. ジムロート転位 (共役 1,3-双極子開環体経由) Dimrot…
  3. ランバーグ・バックランド転位 Ramberg-Backlund …
  4. ミズロウ・エヴァンス転位 Mislow-Evans Rearra…
  5. 武田オレフィン合成 Takeda Olefination
  6. マンニッヒ反応 Mannich Reaction
  7. 酵素による光学分割 Enzymatic Optical Reso…
  8. ピナコール転位 Pinacol Rearrangement

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. だれが原子を見たか【夏休み企画: 理系学生の読書感想文】
  2. トム・スタイツ Thomas A. Steitz
  3. リン酸アルミニウムを飲んだら爆発?
  4. 酢酸フェニル水銀 (phenylmercuric acetate)
  5. 喜多氏新作小説!『美少女教授・桐島統子の事件研究録』
  6. 化学者のためのエレクトロニクス講座~5Gで活躍する化学メーカー編~
  7. エシュバイラー・クラーク反応 Eschweiler-Clarke Reaction
  8. ジアゾニウム塩が開始剤と捕捉剤を“兼務”する
  9. デスソース
  10. 結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授

久々の研究者へのインタビューです。第48回は、立教大学の森本正和先生にお願いいたしました。第17回ケ…

畠山琢次 Takuji Hatakeyama

畠山琢次 (はたけやま たくじ)は、日本の化学者である。専門は有機合成化学,材料化学。2021年現在…

DNA origami入門 ―基礎から学ぶDNAナノ構造体の設計技法―

(さらに&hellip;)…

NBSでのブロモ化に、酢酸アンモニウムをひとつまみ

芳香環のブロモ化といえば、構造活性相関の取得はもちろんの事、カップリング反応の足場と…

森本 正和 Masakazu Morimoto

森本 正和(もりもと まさかず、MORIMOTO Masakazu)は、日本の化学者である。専門は有…

「リジェネロン国際学生科学技術フェア(ISEF)」をご存じですか?

近年、中高生向けの科学プログラムやコンテストがいっそうの充実を見せています。未来の化学者育成に少なか…

ニトリル手袋は有機溶媒に弱い?

化学実験の際に一般的に着用されるニトリル製手袋は、有機溶媒を貫通させます。そのため、手袋を着用した手…

「化学と工業」読み放題になったの知ってますか?+特別キャンペーン

日本化学会会員の皆様に朗報です。会員が毎月届けられる「化学と工業」誌。じっくり読む人、パラパ…

Chem-Station Twitter

PAGE TOP