[スポンサーリンク]

odos 有機反応データベース

トリプトファン選択的タンパク質修飾反応 Trp-Selective Protein Modification

[スポンサーリンク]

トリプトファン(Tryptophan, Trp)は90%のタンパク質中に含まれる疎水性アミノ酸である。一次配列中の存在比率および表面露出数は、天然アミノ酸20種の中でも最低である。また、その疎水性側鎖(インドール)は電荷を持たないため、修飾がタンパク質の物性に影響を与えづらい。このような特徴から、Trpは化学・位置選択的修飾反応の標的として魅力がある。

チロシンと同様、電子豊富な芳香環側鎖を持つため、その特性を利用する戦略にて選択的修飾法の開発が検討されてきた。しかしながら、重金属の使用や強い化学条件の使用がほとんどの既報例で要請される都合、実用観点では改善の余地が多い反応形式の一つでもある。

基本文献

<Chemist’s Guide>

反応例

電子豊富なインドールC2・C3位を狙う戦略が基本である。

C2位の反応条件は多くの場合、遷移金属触媒の使用を必要とする。とりわけ金属カルベノイド種を経る条件[1]は、しばしばN-H結合と反応したり、他残基との交差反応性も問題になりうる。

金触媒を用いるC-H活性化触媒法の応用[2]。TrpのN-H結合を適切に保護したり、小サイズのペプチドに実施する場合には、マンガン触媒[3]、パラジウム触媒[4]、ルテニウム触媒[5]でも同形式の反応が行えることが実証されている。

C3位での反応条件は求電子的条件が必要となるが、他アミノ酸残基との交差反応性が懸念される都合、事例は少ない。金属フリーな条件で行えるTrp選択的修飾法が開発されている[6]。

UV光照射でテトラゾールから生成する1,3-双極子との環化によっても修飾が行える[7]。

強酸性条件が必要だが、ペプチドレベルでは大環状環化への応用も検討されている[8]。

参考文献

  1. (a) Antos, J. M.; Francis, M. B. J. Am. Chem. Soc. 2004, 126, 10256. DOI: 10.1021/ja047272c (b) Antos, J. M.; McFarland, J. M.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2009, 131, 6301. DOI: 10.1021/ja900094h (c) Popp, B. V.; Ball, Z. T. J. Am. Chem. Soc. 2010, 132, 6660. DOI: 10.1021/ja101456c (d) Poppa, B. V.; Ball, Z. T. Chem. Sci. 2011, 2, 690. doi: 10.1039/C0SC00564A 
  2. (a) Hansen, M. B.; Hubalek, F.; Skrydstrup, T.; Hoeg-Jensen, T. Chem. Eur. J. 2016, 22, 1572. DOI: 10.1002/chem.201504462 (b) Tolnai, J. G.; Brand, J. P.; Waser, J. Beilstein J. Org. Chem. 2016, 12, 745. doi:10.3762/bjoc.12.74
  3. Ruan, Z.; Sauermann, N.; Manoni, E.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 3172. DOI: 10.1002/anie.201611118
  4. (a) Ruiz-Rodriguez, J.; Albericio, F.; Lavilla, R. Chem. Eur. J. 2010, 16, 1124. DOI: 10.1002/chem.200902676 (b) Reay, A. J.; Williams, T. J.; Fairlamb, I. J. S. Org. Biomol. Chem. 2015, 13, 8298. doi: 10.1039/C5OB01174D
  5. Schischko, A.; Ren, H.; Kaplaneris, N.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 1576. doi:10.1002/anie.201609631
  6. Seki, Y.; Ishiyama, T.; Sasaki, D.; Abe, J.; Sohma, Y.; Oisaki, K.; Kanai, M. J. Am. Chem. Soc. 2016, 138, 10798. doi:10.1021/jacs.6b06692
  7. Siti, W.; Khan, A. K.; de Hoog, H. P.; Liedberg, B.; Nallani, M. Org. Biomol. Chem. 2015, 13, 3202. doi:10.1039/C4OB02025A
  8. Rose, T. E.; Curtin, B. H.; Lawson, K. V.; Simon, A.; Houk, K. N. Harran, P. G. Chem. Sci. 2016, 7, 4158. DOI: 10.1039/c5sc04612b

関連書籍

ケムステ関連記事

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. スクラウプ キノリン合成 Skraup Quinoline Sy…
  2. ハンチュ ジヒドロピリジン合成  Hantzsch Dihydr…
  3. カルボニル化を伴うクロスカップリング Carbonylative…
  4. カルボニル-エン反応(プリンス反応) Carbonyl-Ene …
  5. MSH試薬 MSH reagent
  6. 鋳型合成 Templated Synthesis
  7. シュワルツ試薬 Schwartz’s Reagent…
  8. 植村酸化 Uemura Oxidation

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第18回 出版業務が天職 – Catherine Goodman
  2. 究極の二量体合成を追い求めて~抗生物質BE-43472Bの全合成
  3. 不斉ストレッカー反応 Asymmetric Strecker Reaction
  4. 研究者×Sigma-Aldrichコラボ試薬 のポータルサイト
  5. シェールガスにかかわる化学物質について
  6. 野依さん講演を高速無線LAN中継、神鋼が実験
  7. 分子光化学の原理
  8. フッフッフッフッフッ(F5)、これからはCF3からSF5にスルフィド(S)
  9. 新規抗生物質となるか。Pleuromutilinsの収束的短工程合成
  10. ChemDraw の使い方【作図編④: 反応機構 (前編)】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
« 10月   12月 »
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

元素手帳2022

毎年これが届くと、ああもう今年も終わりかあと思うようになりました。そう、読者…

ダイセル発、にんにく由来の機能性表示食品「S-アリルシステイン」

株式会社ダイセルは、カラダの疲れを感じている方のための機能性表示食品「S-アリルシステイン」を消費者…

Delta 6.0.0 for Win & Macがリリース!

NMR解析ソフトDeltaの最新版6.0.0がリリースされました!&nb…

こんなのアリ!?ギ酸でヒドロカルボキシル化

可視光レドックス触媒によるギ酸を炭素源としたヒドロカルボキシル化が開発された。チオール触媒を介したラ…

ポンコツ博士研究員の海外奮闘録 ケムステ異色連載記

本稿は,世間一般にほとんど知られていない地方私立大学で学位を修了し,エリートでもなく何も成し遂げてい…

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck…

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP