[スポンサーリンク]

スポットライトリサーチ

湿度によって色が変わる分子性多孔質結晶を発見

[スポンサーリンク]

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひろし)先生にお願いしました。

山本研究室はパイ共役有機低分子・高分子や生体分子からなる超分子ナノ構造体等の様々な分子集合体の機能に注目し、新規デバイスにも繋がるようなユニークな光/電子機能を発現する材料を次々に報告されています。本年にはJST CRESTにも採択されており(「自己組織化トポロジカル有機マイクロ共振器の開発」)、ますます精力的に多岐に渡る機能性材料を探索されています。

山岸先生からスポットライトリサーチにご寄稿いただくのは二回目です(つぶれにくく元にも戻せる多孔性結晶の開発)。今回ご紹介いただける内容は、山岸先生が得意にされている分子性多孔性でハイドロクロミズム(水の有無で色が変わる現象)の機能を有する材料を開発できたという成果です。本成果は、Communications Chemistry誌に原著論文として公開され、筑波大学などからプレスリリースされています。

“Sigmoidally hydrochromic molecular porous crystal with rotatable dendrons”
Hiroshi Yamagishi, Sae Nakajima, Jooyoung Yoo, Masato Okazaki, Youhei Takeda, Satoshi Minakata, Ken Albrecht, Kimihisa Yamamoto, Irene Badía-Domínguez, Maria Moreno Oliva, M. Carmen Ruiz Delgado, Yuka Ikemoto, Hiroyasu Sato, Kenta Imoto, Kosuke Nakagawa, Hiroko Tokoro, Shin-ichi Ohkoshi & Yohei Yamamoto, Communications Chemistry 3, 118 (2020),  doi: 10.1038/s42004-020-00364-3 [Open Access]

山本洋平教授からは、山岸先生に向けて以下のコメントをいただいています。

本研究は、新学術領域「π造形科学」の中で、武田さん(阪大)とアルブレヒトさん(東工大、現九大)のコンビが共同で合成した発光性デンドリマー分子について、何か機能を発現できないかということで、3グループの共同研究として3年前に開始しました。はじめに担当した学生が、形成した結晶粉末について調べたところ、「真空びき」で色が変わり(圧力誘起?)、「加熱」でも色が変わり(温度誘起?)、「水滴の近く」に置いても色が変わる(湿度誘起?)、との報告を受けました。色変化のメカニズムが分からず混沌としていたところに、有機ポーラス結晶の研究で博士号を取得した山岸君が助教として本学に着任し、これらの現象のメカニズムの解明に取り組みました。国内外の共同研究も含め多角的に実験・解析を進めた結果、詳細な物性評価と色変化のメカニズムの提案ができ、今回の論文発表に至りました。山岸君の鋭い洞察と、綿密な実験のおかげで本研究が実を結ぶことができました。

それでは、山岸先生からのメッセージをご覧ください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

本研究では、周りの湿度が上がると黄色から赤色へと見た目が変わる分子性多孔質結晶を発見しました。分子性多孔質結晶とは、ファンデルワールス力のような極めて弱い力で支えられた分子性の多孔質結晶のことです。水素結合で支えられた多孔質結晶(Hydrogen-bonded Organic Framework)よりも更に弱い骨格であることを強調するために、porous van der Waals crystal などと呼ばれることもあります。分子性多孔質結晶は戦略的設計性や熱安定性に乏しい未熟な材料群ではあるのですが、分子間力の弱さを逆手に取った独特な性質(構造柔軟性やプロセス性など)を備えていること、室温よりも遥かに高い温度(200–300度)でも構造を維持できることなどが最近徐々に明らかになってきています(このあたりについては以前寄稿させていただいた記事でも解説しておりますので、ぜひ一読いただければと存じます)。本研究で見つけた材料は、分子性多孔質結晶にハイドロクロミズム(湿度に応答して色が変化する機能)を付与した初の報告となります。この結晶を構成する分子は、電子ドナーとして働くカルバゾールデンドロンと電子アクセプターとして働くジベンゾフェナジンからなる第2世代デンドリマーです。この分子は低湿度では黄色の固体ですが、高湿度になると速やかに赤色へと変化します。室温における色変化の閾値は40–50 %RHで、息を吹きかけると瞬間で色が変わるなど絶妙な見た目の変化を起こしてくれます。湿度が高い条件では孔を通して水分が固体内部に侵入し、その水分子がデンドリマーと相互作用することにより吸収色が変化します(図1)。興味深いことに、非晶質の固体では湿度に応答した色変化が見られません。固体の色を変化させるためには、気体分子が固体内部へと侵入するための微細な孔が必要であることを示しています。

図1 (a) 開発された機能性デンドリマー分子。(b)吸湿/乾燥による可逆的な色変化の様子。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究は、学生がリレーのようにバトンを繋ぐことで実を結んだ研究です。実は色が変わる現象を見つけたのは、私が赴任する前に研究室に所属していた学生です。自己組織化で得られた粉末試料の色が、真空にひいたり、加熱したり、息を吹きかけたりすることで変化する現象を見出しました。その後、この研究を引き継いだ学生が構造解析やメカニズムを探索してくれたのですが、研究が進展したのはその二人目の学生が卒業する頃で、溶媒の誘電率依存性や水の吸着特性、色変化のメカニズムなどが怒涛のように明らかになっていきました。この間に、国内、海外含め、多くの先生方と共同研究をさせていただき、現在の形になりました。この場で感謝を述べるとともに、このような大きなテーマに関われたことに感慨を覚えております。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本論文の初稿では、分光学的なデータを元に水分の吸着に伴う結晶構造の独特な変化と色変化との相関を主張しておりました。しかし単結晶構造解析結果がない状態で分子構造を議論することに関してエディターとレフリーから異議があがり、大きく方向転換せざるを得ませんでした。そこで、分子の構造変化に関する議論を大きく削り、色変化の温度・湿度依存性により重点を置いた、シンプルで明快な現在のストーリーに変更しました。一方で、「ある閾値を境に劇的に色変化するのはなぜか」という本質的なポイントがまだ未解明であるため、今後、粉末試料(可能なら単結晶試料)を用いた詳細な結晶構造解析を行うことで明らかにしたいと考えております。

Q4. 将来は化学とどう関わっていきたいですか?

学会などで発表を拝聴していると、自分自身で切り開いてきた研究分野を俯瞰的に解説するタイプの発表に特に感銘を受けます。分野としての将来像とその実現難易度、その障害を越えるための戦略などを体系的に説明されると圧倒されてしまいます。また、自分の発見を元に普遍的な材料設計戦略を打ち立てる過程や、基礎科学的知見へと一般化していく過程などを聞くと知的興味が刺激されます。自分も、10年後に何か新しい研究分野を築くという気持ちで日々挑戦しております

Q5. 最後に、読者の皆さんにメッセージをお願いします。

この度は我々の研究紹介記事を読んで頂きありがとうございました。また、記事掲載という貴重な機会をくださったケムステスタッフの方にも感謝しております。今後も読者の方々の知的興味をそそるような材料開発・現象発見を続けていきたいと考えております。

関連リンク

  1. 筑波大学 数理物質科学研究科 山本洋平・山岸洋 研究室
  2. Youhei Takeda @ OU
  3. 九州大学 先導物質科学研究室 アルブレヒト研究室
  4. プレスリリース:湿度によって色が変わる新しい分子性多孔質結晶を開発

研究者の略歴

名前: 山岸 洋 (やまぎし ひろし)

所属: 筑波大学 数理物質系

専門: 超分子化学 レーザー光学

略歴:
2013年-2018年 東京大学大学院工学系研究科 博士課程 (2018年3月 博士(工学)取得)
2017年 リバプール大学 客員研究員
2018年-現在 筑波大学 数理物質系 助教(現職)

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 有機合成化学 vs. 合成生物学 ― 将来の「薬作り」を席巻する…
  2. 【著者インタビュー動画あり!】有機化学1000本ノック スペクト…
  3. ナノ学会 第22回大会 付設展示会ケムステキャンペーン
  4. ケミストリ・ソングス【Part1】
  5. ルィセンコ騒動のはなし(後編)
  6. 薬が足りない!?ジェネリック医薬品の今
  7. 分子間エネルギー移動を利用して、希土類錯体の発光をコントロール!…
  8. FT-IR・ラマン ユーザーズフォーラム 2015

注目情報

ピックアップ記事

  1. 超薄型、曲げられるMPU開発 セイコーエプソン
  2. Reaxys Prize 2011発表!
  3. ニセ試薬のサプライチェーン
  4. メンデレーエフ空港
  5. “匂いのゴジラ”の無効化
  6. 重水は甘い!?
  7. 武田薬品、糖尿病薬「アクトス」に抗炎症作用報告
  8. 新たな製品から未承認成分検出 大津の会社製造
  9. エーテルがDiels–Alder反応?トリチルカチオンでin situ 酸化DA!
  10. 界面活性剤のWEB検索サービスがスタート

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP