[スポンサーリンク]

I

内部アルコキシ効果 Inside Alkoxy Effect

[スポンサーリンク]

概要

鎖状光学活性アリルエーテルのC=C二重結合に対して1,3-双極子付加環化が進行する場合、立体選択性が発現する。これを上手く説明するモデルとして、内部アルコキシ効果(Inside Alkoxy Effect)が提唱されている。

基本文献

  • Stork, G.; Kahn, M. Tetrahedron Lett. 1983, 24, 3951. doi:10.1016/S0040-4039(00)88233-7
  • Houk, K. N.; Moses, S. R.; Wu, Y. D.; Rondan, N. G.; Jager, V.; Schohe, R.; Fronczek, F. R. J. Am. Chem. Soc. 1984, 106, 3880. doi:10.1021/ja00325a040
  • Houk, K. N.; Rondan, N. G.; Wu, Y.-D.; Metz, J. T.; Paddon-Row, M. N.  Tetrahedron 1984, 40, 2257. doi:10.1016/0040-4020(84)80009-5
  • Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron 1984, 40, 2247. doi:10.1016/0040-4020(84)80008-3
  • Vedejs, E.; McClure, C. K. J. Am. Chem. Soc. 1986, 108, 1094. doi:10.1021/ja00265a048
  • Houk, K. N.; Dhu, H. Y.; Dong, Y.; Moses, S. R. J. Am. Chem. Soc. 1986, 108, 2754. doi:10.1021/ja00270a044
  • Raimondi, L.; Wu, Y.-D.; Brown, F. K.; Houk, K. N. Tetrahedron Lett. 1992, 33, 4409. doi:10.1016/S0040-4039(00)60096-5
  • Haller, J.; Strassner, T.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 8031. doi:10.1021/ja971342g
  • Annunziata, R.; Benaglia, M.; Cinquini,M.; Cozzi, F.; Raimondi, L. Eur. J. Org. Chem. 1998, 1823. [abstract]
  • Raimondi, L.; Benaglia, M. Eur. J. Org. Chem. 2001, 1033. [abstract]
  • Patel, A.; Vella, J. R.; Ma, Z.-X.; Hsung, R. P.; Houk, K. N. J. Org. Chem. 2015, 80, 11888.  doi:10.1021/acs.joc.5b02085
<review>

開発の経緯

1983年にGilbert Storkらによってオスミウム酸化の系ではじめてモデルが提唱された。後の1984年にKendall Houkらによってニトリルオキシド1,3-双極子付加環化の系を用いた計算化学的裏付けがなされた。

Kendall N. Houk (1943-)

 

反応機構

1,3-アリル位反発による立体配座効果だけでは説明できないため、立体電子効果まで含めて理解する必要がある。

アルコキシ基のC-O σ*軌道がC=C π軌道と共鳴できる配座であるほど、アルケンが電子不足になるため、求電子剤との反応が進行しづらくなる。同じ理由から、置換基RのC-C σ軌道がC=C π軌道と共鳴できる配座であるほど、反応は進行しやすくなる。

これら軌道の重なりが成立しつつ立体反発を最小化できる配座がすなわち、置換基Rが二重結合平面と直交(anti)し、アルコキシ基が内部に向く(inside)配座となる。この配座において、置換基Rとの立体反発を避ける方向から反応剤が近づいてくる遷移状態を想定すると、立体選択性が説明される。

反応例

全合成への応用

Bromodanicalipin Aの合成[1]

(+)-Frondosin Aの合成[2]:Ru触媒を用いる[5+2]付加環化において、inside alkoxy modelを用いる立体選択性の説明が成されている(上段遷移状態が優勢)。

(画像は[2]より引用)

(+)-Citreoviralの全合成[3]:ヨードラクトン化の立体化学がinside alkoxy modelで説明されている。

参考文献

  1. Fischer, S.; Huwyler, N.; Wolfrum, S.; Carreira, E. M. Angew. Chem. Int. Ed. 2016, 55, 2555. doi:10.1002/anie.201510608
  2. Trost, B. M.; Hu, Y.; Horne, D. B. J. Am. Chem. Soc. 2007, 129, 11781. doi:10.1021/ja073272b
  3. Murata, Y.; Kamino, T.; Aoki, T.; Hosookawa, S.; Kobayashi, S. Angew. Chem. Int. Ed. 2004, 43, 3175. doi:10.1002/anie.200454212

関連反応・記事

関連書籍

立体電子効果

立体電子効果

A.J. カービー
¥2,530(as of 10/07 13:31)
Amazon product information

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ヘル・フォルハルト・ゼリンスキー反応 Hell-Volhard-…
  2. コーンフォース転位 Cornforth Rearrangemen…
  3. アセタール還元によるエーテル合成 Ether Synthesis…
  4. 有機リチウム試薬 Organolithium Reagents
  5. ブラン環化 Blanc Cyclization
  6. 溝呂木・ヘック反応 Mizoroki-Heck Reaction…
  7. フリッチュ・ブッテンバーグ・ウィーチェル転位 Fritsch-B…
  8. 向山・鈴木グリコシル化反応 Mukaiyama-Suzuki G…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マット・フランシス Matthew B. Francis
  2. タミフル―米国―厚労省 疑惑のトライアングル
  3. 複雑な化合物を効率よく生成 名大チーム開発
  4. 高分子の合成(上)(下)
  5. どっちをつかう?:adequateとappropriate
  6. 2019年ノーベル化学賞は「リチウムイオン電池」に!
  7. 高分子と低分子の間にある壁 1:分子量分布
  8. 第37回「トリプレットでないと達成できない機能を目指して」楊井 伸浩 准教授
  9. 『主鎖むき出し』の芳香族ポリマーの合成に成功 ~長年の難溶性問題を解決~
  10. グローブボックスあるある

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

注目情報

最新記事

2022年ノーベル化学賞ケムステ予想当選者発表!

2022ノーベル化学賞が発表されました。「クリックケミストリ…

マテリアルズ・インフォマティクスにおけるデータの前処理-データ整理・把握や化学構造のSMILES変換のやり方を解説-

開催日:2022/10/12 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

【いまさら聞けない?】アジドの取扱いを学んでおこう!

今年のノーベル化学賞とも深く関連する、アジド化合物。受賞対象となったクリックケミストリーに加えて、ア…

【技術系スタートアップ合同フォーラムのお知らせ】 ディープテックのリアル-業界ならでは魅力と社会課題解決への想い

ディープテックに関心がある方、スタートアップへのジョインに興味のある方、スタート…

【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!

2022年のノーベル化学賞は「クリックケミストリーと生体直交化学」の開発業績で、バリー・シャープレス…

in-situ放射光X線小角散実験から明らかにする牛乳のナノサイエンス

第425回のスポットライトリサーチは、高エネルギー加速器研究機構 物質構造科学研究所(物構研)の高木…

アセトアミノフェン Acetaminophen

 アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタ…

不安定な高分子原料を従来に比べて 50 倍安定化することに成功! ~水中での化学反応・材料合成に利用可能、有機溶媒の大幅削減による脱炭素に貢献~

第424回のスポットライトリサーチは、京都工芸繊維大学大学院工芸科学研究科 バイオベースマテリアル学…

【10月開催】マイクロ波化学ウェブセミナー

<内容>今月もテーマを分けて2回開催いたします。第一…

越野 広雪 Hiroyuki Koshino

越野 広雪(こしの ひろゆき)は、NMRやマススペクトルなどのもとにした有機分子の構造解析を専門とす…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP