[スポンサーリンク]

C

システイン選択的タンパク質修飾反応 Cys-Selective Protein Modification

[スポンサーリンク]

システイン(Cysteine, Cys)は自然界における存在比率が低く、側鎖(SH基)のpKaが低く(pKa ~ 8.2)求核性が高いため、生体共役反応の標的として有用である。リジン選択的手法と並んで活用される機会が多い。反応性の高さを利用し、活性ベースプロテオミクス用途にも活用されている。

多くの事例ではマレイミドへのマイケル付加形式が用いられるが、結合の不安定性がしばしば問題となる。このため、数々の改良手法が開発されている

本質的課題としては、大抵のCysはタンパク質構造保持などの観点からシスチン(ジスルフィド架橋型Cysダイマー)として存在しており、変換のためにはS-S結合を切断する還元的前処理が必要となる。このため、タンパク質の高次構造を保存したままの修飾が難しい。この事情から遺伝子操作によってunpaired Cysを別途導入して修飾を行なうなどの工夫が成されることが多い。

架橋型修飾法、デヒドロアラニン経由法、ネイティブケミカルライゲーション、N末端Cys修飾は別項を参照されたい。

基本文献

<Review>
<Chemist’s Guide>

反応例

アルキル化反応[1]:他の求核性アミノ酸残基(Lys, His)との交差反応性や、試薬の加水分解が懸念事項である。α-ヨード(ブロモ)アセトアミド試薬が良く用いられる。以下はタンパク質にGrubbs触媒を結合させてメタセシス触媒を創製した例である[2]。

パーフルオロアリール化[3]:芳香族求核置換反応を経由する。生じた結合は安定性に優れる。π-クランプ(FCPF)と呼ばれる配列を組み込むことで、配列選択的な反応を行なうことも可能[3b]。試薬の水溶性が低いのが難点。

マレイミドへのマイケル付加[4]:反応は十分高速であり、副生成物を生じず、大スケールでの実施も可能。レトロマイケル反応によって可逆チオール交換が起きることと、スクシンイミドの開環による挙動の違い(C-S結合は安定になる)が生じうることが懸念点。

一方で歴史が古いこともあって活用知見が多く、多く実用されている。下記は市販ADCの一つであるアドセトリスの構造。抗体鎖間のCysを介して、低分子薬物モノメチルオーリスタチンE(MMAE)をカテプシン切断リンカー(Val-Cit)によって接続している。

他のマイケルアクセプター型試薬としては、アルキニルケトン[5]、アルキニルニトリル[6]、アレナミド[7]などとの反応が報告されている。

交差ジスルフィド形成[8]: S-S結合が内在性チオールと交換したりredox-sensitiveであることが懸念点であるが、適切なドラッグデリバリーシステム応用にはこの特性が利することもある。

チオール-エン/イン反応: 有機溶媒が必要ないこと、酸素や水に耐性があることなどは利点だが、UV照射によってタンパク質が毀損されてしまうことが多くの場合問題である。反応機構に関してはリンク先の別項を参照。

有機金属種を用いる手法:毒性などが懸念されるため、in vivo応用には積極的に検討されてこなかったものの、物質製造方法論としては魅力がある。ロジウムカルベノイドを用いる手法[9]、パラジウム錯体によるS-アリール化[10]、金触媒によるうアレンへの付加[11]などが報告されている。下記はS-アリール化を用いたADCの創製例[10]。

実験手順

実験のコツ・テクニック

  • S-S結合の還元的切断には、トリス(2-カルボキシエチル)ホスフィン(TCEP)塩酸塩が用いられる。広範なpHで使用可能な点が特徴である(1.5 < pH < 8.5)。ジチオスレイトール(DTT)もより強力な還元剤として頻用されるが、中性条件近傍(pH>7)でしか機能しない点、架橋試薬に対する反応性を持つ点などが欠点である。
  • マレイミド基への付加については、pH>7.5ではアミノ基とも反応してしまい、またチオール付加物が加水分解して開環して混合物を生じてしまう。pH6-7.5程度で行うとチオールへの反応性はアミノ基の1000倍ほど高いので、このpH範囲で行うのが良い。クエンチ時にグルタチオンなどを加えると過剰反応も抑制できる。
  • ヨードアセトアミド基への置換反応については、pH<8で行うとほぼチオール選択的に反応が進行する。

参考文献

  1. Recent Review: Calce, E.; De Luca, S. Chem. Eur. J. 2017, 23, 224. DOI: 10.1002/chem.201602694
  2. Mayer, C.; Gillingham, D. G.; Ward, T. R.; Hilvert, D. Chem. Commun. 2011, 47, 12068. doi:10.1039/C1CC15005G
  3. (a) Spokoyny, A. M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y.; Pentelute, B. L. J. Am. Chem. Soc. 2013, 135, 5946. DOI: 10.1021/ja400119t (b) Zhang, C.; Welborn, M.; Zhu, T.; Yang, N. J.; Santos, M. S.; Voorhis, T. V.; Pentelute, B. L. Nat. Chem. 2016, 8, 120. doi:10.1038/nchem.2413
  4. (a) Moore, J. E.; Ward, W. H. J. Am. Chem. Soc. 1956, 78, 2414. DOI: 10.1021/ja01592a020 (b) Review: Ravasco, J. M. J. M.; Faustino, H.; Trindade, A.; Gois, P. M. P. Chem. Eur. J. 2019, 25, 43.  DOI:10.1002/chem.201803174
  5. Shiu, H.-Y.; Chan, T.-C.;  Ho, C.-M.; Liu, Y.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2009, 15, 3839. DOI: 10.1002/chem.200800669
  6. Koniev, O.; Leriche, G.; Nothisen, M.; Remy, J.-S.; Strub, J.-M.; Schaeffer-Reiss, C.; Dorsselaer, A. V.; Baati, R.; Wagner, A. Bioconjugate Chem. 2014, 25, 202. DOI: 10.1021/bc400469d
  7. Abbas, A.; Xing, B.; Loh, T.-P. Angew. Chem. Int. Ed. 2014, 53, 7491. DOI: 10.1002/ange.201403121
  8. (a) Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70. doi:10.1016/0003-9861(59)90090-6 (b) Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267. doi:10.1038/nchembio.315
  9. Kundu, R.; Ball, Z. T. Chem. Commun. 2013, 49, 4166. doi:10.1039/C2CC37323H
  10. (a) Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. Nature 2015, 526, 687. doi:10.1038/nature15739 (b) Rojas, A. J.; Pentelute, B. L.; Buchwald, S. L. Org. Lett. 2017, 19, 4263. DOI: 10.1021/acs.orglett.7b01911
  11. Chan, A. O.-Y.; Tsai, J. L.-L.; Lo, V. K.-Y.; Li, G.-L.; Wong, M.-K.; Che, C.-M. Chem. Commun. 2013, 49, 1428. doi:10.1039/C2CC38214H

関連書籍

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ペタシス試薬 Petasis Reagent
  2. カルボン酸の保護 Protection of Carboxyli…
  3. シャープレス不斉アミノヒドロキシル化 Sharpless Asy…
  4. N-カルバモイル化-脱アルキル化 N-carbamoylatio…
  5. ウォール・チーグラー臭素化 Wohl-Ziegler Bromi…
  6. ゾムレ・ハウザー転位 Sommelet-Hauser Rearr…
  7. 向山酸化還元縮合反応 Mukaiyama Redox Conde…
  8. 金属水素化物による還元 Reduction with Metal…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 3-メチル-1-フェニル-2-ホスホレン1-オキシド:3-Methyl-1-phenyl-2-phospholene 1-Oxide
  2. 万有製薬、つくば研究所を閉鎖
  3. 光学迷彩をまとう海洋生物―その仕組みに迫る
  4. パラジウムの市場価格が過去最高値を更新。ケミストへの影響は?
  5. 【ケムステSlackに訊いてみた③】化学で美しいと思うことを教えて!
  6. Macユーザーに朗報!ChemDrawとWordが相互貼付可能に!
  7. ダイセル化学、有機合成全製品を値上げ
  8. スターバースト型分子、ヘキサアリールベンゼン合成の新手法
  9. 生合成を模倣しない(–)-jorunnamycin A, (–)-jorumycinの全合成
  10. 一般人と化学者で意味が通じなくなる言葉

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP