[スポンサーリンク]

C

システイン選択的タンパク質修飾反応 Cys-Selective Protein Modification

[スポンサーリンク]

システイン(Cysteine, Cys)は自然界における存在比率が低く、側鎖(SH基)のpKaが低く(pKa ~ 8.2)求核性が高いため、生体共役反応の標的として有用である。リジン選択的手法と並んで活用される機会が多い。反応性の高さを利用し、活性ベースプロテオミクス用途にも活用されている。

多くの事例ではマレイミドへのマイケル付加形式が用いられるが、結合の不安定性がしばしば問題となる。このため、数々の改良手法が開発されている

本質的課題としては、大抵のCysはタンパク質構造保持などの観点からシスチン(ジスルフィド架橋型Cysダイマー)として存在しており、変換のためにはS-S結合を切断する還元的前処理が必要となる。このため、タンパク質の高次構造を保存したままの修飾が難しい。この事情から遺伝子操作によってunpaired Cysを別途導入して修飾を行なうなどの工夫が成されることが多い。

架橋型修飾法、デヒドロアラニン経由法、ネイティブケミカルライゲーション、N末端Cys修飾は別項を参照されたい。

基本文献

<Review>
<Chemist’s Guide>

反応例

アルキル化反応[1]:他の求核性アミノ酸残基(Lys, His)との交差反応性や、試薬の加水分解が懸念事項である。α-ヨード(ブロモ)アセトアミド試薬が良く用いられる。以下はタンパク質にGrubbs触媒を結合させてメタセシス触媒を創製した例である[2]。

パーフルオロアリール化[3]:芳香族求核置換反応を経由する。生じた結合は安定性に優れる。π-クランプ(FCPF)と呼ばれる配列を組み込むことで、配列選択的な反応を行なうことも可能[3b]。試薬の水溶性が低いのが難点。

マレイミドへのマイケル付加[4]:反応は十分高速であり、副生成物を生じず、大スケールでの実施も可能。レトロマイケル反応によって可逆チオール交換が起きることと、スクシンイミドの開環による挙動の違い(C-S結合は安定になる)が生じうることが懸念点。

一方で歴史が古いこともあって活用知見が多く、多く実用されている。下記は市販ADCの一つであるアドセトリスの構造。抗体鎖間のCysを介して、低分子薬物モノメチルオーリスタチンE(MMAE)をカテプシン切断リンカー(Val-Cit)によって接続している。

他のマイケルアクセプター型試薬としては、アルキニルケトン[5]、アルキニルニトリル[6]、アレナミド[7]などとの反応が報告されている。

交差ジスルフィド形成[8]: S-S結合が内在性チオールと交換したりredox-sensitiveであることが懸念点であるが、適切なドラッグデリバリーシステム応用にはこの特性が利することもある。

チオール-エン/イン反応: 有機溶媒が必要ないこと、酸素や水に耐性があることなどは利点だが、UV照射によってタンパク質が毀損されてしまうことが多くの場合問題である。反応機構に関してはリンク先の別項を参照。

有機金属種を用いる手法:毒性などが懸念されるため、in vivo応用には積極的に検討されてこなかったものの、物質製造方法論としては魅力がある。ロジウムカルベノイドを用いる手法[9]、パラジウム錯体によるS-アリール化[10]、金触媒によるうアレンへの付加[11]などが報告されている。下記はS-アリール化を用いたADCの創製例[10]。

実験手順

実験のコツ・テクニック

  • S-S結合の還元的切断には、トリス(2-カルボキシエチル)ホスフィン(TCEP)塩酸塩が用いられる。広範なpHで使用可能な点が特徴である(1.5 < pH < 8.5)。ジチオスレイトール(DTT)もより強力な還元剤として頻用されるが、中性条件近傍(pH>7)でしか機能しない点、架橋試薬に対する反応性を持つ点などが欠点である。
  • マレイミド基への付加については、pH>7.5ではアミノ基とも反応してしまい、またチオール付加物が加水分解して開環して混合物を生じてしまう。pH6-7.5程度で行うとチオールへの反応性はアミノ基の1000倍ほど高いので、このpH範囲で行うのが良い。クエンチ時にグルタチオンなどを加えると過剰反応も抑制できる。
  • ヨードアセトアミド基への置換反応については、pH<8で行うとほぼチオール選択的に反応が進行する。

参考文献

  1. Recent Review: Calce, E.; De Luca, S. Chem. Eur. J. 2017, 23, 224. DOI: 10.1002/chem.201602694
  2. Mayer, C.; Gillingham, D. G.; Ward, T. R.; Hilvert, D. Chem. Commun. 2011, 47, 12068. doi:10.1039/C1CC15005G
  3. (a) Spokoyny, A. M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y.; Pentelute, B. L. J. Am. Chem. Soc. 2013, 135, 5946. DOI: 10.1021/ja400119t (b) Zhang, C.; Welborn, M.; Zhu, T.; Yang, N. J.; Santos, M. S.; Voorhis, T. V.; Pentelute, B. L. Nat. Chem. 2016, 8, 120. doi:10.1038/nchem.2413
  4. (a) Moore, J. E.; Ward, W. H. J. Am. Chem. Soc. 1956, 78, 2414. DOI: 10.1021/ja01592a020 (b) Review: Ravasco, J. M. J. M.; Faustino, H.; Trindade, A.; Gois, P. M. P. Chem. Eur. J. 2019, 25, 43.  DOI:10.1002/chem.201803174
  5. Shiu, H.-Y.; Chan, T.-C.;  Ho, C.-M.; Liu, Y.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2009, 15, 3839. DOI: 10.1002/chem.200800669
  6. Koniev, O.; Leriche, G.; Nothisen, M.; Remy, J.-S.; Strub, J.-M.; Schaeffer-Reiss, C.; Dorsselaer, A. V.; Baati, R.; Wagner, A. Bioconjugate Chem. 2014, 25, 202. DOI: 10.1021/bc400469d
  7. Abbas, A.; Xing, B.; Loh, T.-P. Angew. Chem. Int. Ed. 2014, 53, 7491. DOI: 10.1002/ange.201403121
  8. (a) Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70. doi:10.1016/0003-9861(59)90090-6 (b) Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267. doi:10.1038/nchembio.315
  9. Kundu, R.; Ball, Z. T. Chem. Commun. 2013, 49, 4166. doi:10.1039/C2CC37323H
  10. (a) Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. Nature 2015, 526, 687. doi:10.1038/nature15739 (b) Rojas, A. J.; Pentelute, B. L.; Buchwald, S. L. Org. Lett. 2017, 19, 4263. DOI: 10.1021/acs.orglett.7b01911
  11. Chan, A. O.-Y.; Tsai, J. L.-L.; Lo, V. K.-Y.; Li, G.-L.; Wong, M.-K.; Che, C.-M. Chem. Commun. 2013, 49, 1428. doi:10.1039/C2CC38214H

関連書籍

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 原子移動ラジカル重合 Atom Transfer Radical…
  2. ピクテ・スペングラー反応 Pictet-Spengler Rea…
  3. カルバメート系保護基 Carbamate Protection
  4. 9-フルオレニルメチルオキシカルボニル保護基 Fmoc Prot…
  5. コーリー・ニコラウ マクロラクトン化 Corey-Nicolao…
  6. ナザロフ環化 Nazarov Cyclization
  7. 触媒的C-H活性化反応 Catalytic C-H activa…
  8. ハネシアン・ヒュラー反応 Hanessian-Hullar Re…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ガレン・スタッキー Galen D. Stucky
  2. コランヌレン : Corannulene
  3. 四角い断面を持つナノチューブ合成に成功
  4. 研究室クラウド設立のススメ(導入編)
  5. トルキセン : Truxene
  6. 反応の選択性を制御する新手法
  7. 化学のあるある誤変換
  8. 道修町ミュージアムストリート
  9. Google Scholarにプロフィールを登録しよう!
  10. 楊井 伸浩 Nobuhiro Yanai

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

2021年化学企業トップの年頭所感を読み解く

2021年が本格始動し始めている中、化学企業のトップが年の初めに抱負や目標を述べる年頭所感を続々と発…

転職を成功させる「人たらし」から学ぶ3つのポイント

転職活動を始めた場合、まずは自身が希望する職種、勤務地、年収などの条件を元にインターネットで求人を検…

mRNAワクチン(メッセンジャーRNAワクチン)

病原体のタンパクをコードしたmRNAをベースとしたワクチン。従来のワクチンは、弱毒化・不活化した病原…

第139回―「超高速レーザを用いる光化学機構の解明」Greg Scholes教授

第139回の海外化学者インタビューはグレッグ・ショールズ教授です。トロント大学化学科(訳注:現在はプ…

分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】

群論を学んでいない人でも「ある分子の対称性が高い」と直感的に言うことはできるかと思います。しかし分子…

非古典的カルボカチオンを手懐ける

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触…

CEMS Topical Meeting Online 機能性材料の励起状態化学

1月28日に毎年行われている理研の無料シンポジウムが開催されるようです。事前参加登録が必要なので興味…

カルボン酸に気をつけろ! グルクロン酸抱合の驚異

 カルボン酸は、カルボキシ基 (–COOH) を有する有機化合物の一群です。カルボン…

Chem-Station Twitter

PAGE TOP