[スポンサーリンク]

C

システイン選択的タンパク質修飾反応 Cys-Selective Protein Modification

[スポンサーリンク]

システイン(Cysteine, Cys)は自然界における存在比率が低く、側鎖(SH基)のpKaが低く(pKa ~ 8.2)求核性が高いため、生体共役反応の標的として有用である。リジン選択的手法と並んで活用される機会が多い。反応性の高さを利用し、活性ベースプロテオミクス用途にも活用されている。

多くの事例ではマレイミドへのマイケル付加形式が用いられるが、結合の不安定性がしばしば問題となる。このため、数々の改良手法が開発されている

本質的課題としては、大抵のCysはタンパク質構造保持などの観点からシスチン(ジスルフィド架橋型Cysダイマー)として存在しており、変換のためにはS-S結合を切断する還元的前処理が必要となる。このため、タンパク質の高次構造を保存したままの修飾が難しい。この事情から遺伝子操作によってunpaired Cysを別途導入して修飾を行なうなどの工夫が成されることが多い。

架橋型修飾法、デヒドロアラニン経由法、ネイティブケミカルライゲーション、N末端Cys修飾は別項を参照されたい。

基本文献

<Review>
<Chemist’s Guide>

反応例

アルキル化反応[1]:他の求核性アミノ酸残基(Lys, His)との交差反応性や、試薬の加水分解が懸念事項である。α-ヨード(ブロモ)アセトアミド試薬が良く用いられる。以下はタンパク質にGrubbs触媒を結合させてメタセシス触媒を創製した例である[2]。

パーフルオロアリール化[3]:芳香族求核置換反応を経由する。生じた結合は安定性に優れる。π-クランプ(FCPF)と呼ばれる配列を組み込むことで、配列選択的な反応を行なうことも可能[3b]。試薬の水溶性が低いのが難点。

マレイミドへのマイケル付加[4]:反応は十分高速であり、副生成物を生じず、大スケールでの実施も可能。レトロマイケル反応によって可逆チオール交換が起きることと、スクシンイミドの開環による挙動の違い(C-S結合は安定になる)が生じうることが懸念点。

一方で歴史が古いこともあって活用知見が多く、多く実用されている。下記は市販ADCの一つであるアドセトリスの構造。抗体鎖間のCysを介して、低分子薬物モノメチルオーリスタチンE(MMAE)をカテプシン切断リンカー(Val-Cit)によって接続している。

他のマイケルアクセプター型試薬としては、アルキニルケトン[5]、アルキニルニトリル[6]、アレナミド[7]などとの反応が報告されている。

交差ジスルフィド形成[8]: S-S結合が内在性チオールと交換したりredox-sensitiveであることが懸念点であるが、適切なドラッグデリバリーシステム応用にはこの特性が利することもある。

チオール-エン/イン反応: 有機溶媒が必要ないこと、酸素や水に耐性があることなどは利点だが、UV照射によってタンパク質が毀損されてしまうことが多くの場合問題である。反応機構に関してはリンク先の別項を参照。

有機金属種を用いる手法:毒性などが懸念されるため、in vivo応用には積極的に検討されてこなかったものの、物質製造方法論としては魅力がある。ロジウムカルベノイドを用いる手法[9]、パラジウム錯体によるS-アリール化[10]、金触媒によるうアレンへの付加[11]などが報告されている。下記はS-アリール化を用いたADCの創製例[10]。

実験手順

実験のコツ・テクニック

  • S-S結合の還元的切断には、トリス(2-カルボキシエチル)ホスフィン(TCEP)塩酸塩が用いられる。広範なpHで使用可能な点が特徴である(1.5 < pH < 8.5)。ジチオスレイトール(DTT)もより強力な還元剤として頻用されるが、中性条件近傍(pH>7)でしか機能しない点、架橋試薬に対する反応性を持つ点などが欠点である。
  • マレイミド基への付加については、pH>7.5ではアミノ基とも反応してしまい、またチオール付加物が加水分解して開環して混合物を生じてしまう。pH6-7.5程度で行うとチオールへの反応性はアミノ基の1000倍ほど高いので、このpH範囲で行うのが良い。クエンチ時にグルタチオンなどを加えると過剰反応も抑制できる。
  • ヨードアセトアミド基への置換反応については、pH<8で行うとほぼチオール選択的に反応が進行する。

参考文献

  1. Recent Review: Calce, E.; De Luca, S. Chem. Eur. J. 2017, 23, 224. DOI: 10.1002/chem.201602694
  2. Mayer, C.; Gillingham, D. G.; Ward, T. R.; Hilvert, D. Chem. Commun. 2011, 47, 12068. doi:10.1039/C1CC15005G
  3. (a) Spokoyny, A. M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y.; Pentelute, B. L. J. Am. Chem. Soc. 2013, 135, 5946. DOI: 10.1021/ja400119t (b) Zhang, C.; Welborn, M.; Zhu, T.; Yang, N. J.; Santos, M. S.; Voorhis, T. V.; Pentelute, B. L. Nat. Chem. 2016, 8, 120. doi:10.1038/nchem.2413
  4. (a) Moore, J. E.; Ward, W. H. J. Am. Chem. Soc. 1956, 78, 2414. DOI: 10.1021/ja01592a020 (b) Review: Ravasco, J. M. J. M.; Faustino, H.; Trindade, A.; Gois, P. M. P. Chem. Eur. J. 2019, 25, 43.  DOI:10.1002/chem.201803174
  5. Shiu, H.-Y.; Chan, T.-C.;  Ho, C.-M.; Liu, Y.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2009, 15, 3839. DOI: 10.1002/chem.200800669
  6. Koniev, O.; Leriche, G.; Nothisen, M.; Remy, J.-S.; Strub, J.-M.; Schaeffer-Reiss, C.; Dorsselaer, A. V.; Baati, R.; Wagner, A. Bioconjugate Chem. 2014, 25, 202. DOI: 10.1021/bc400469d
  7. Abbas, A.; Xing, B.; Loh, T.-P. Angew. Chem. Int. Ed. 2014, 53, 7491. DOI: 10.1002/ange.201403121
  8. (a) Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70. doi:10.1016/0003-9861(59)90090-6 (b) Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267. doi:10.1038/nchembio.315
  9. Kundu, R.; Ball, Z. T. Chem. Commun. 2013, 49, 4166. doi:10.1039/C2CC37323H
  10. (a) Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. Nature 2015, 526, 687. doi:10.1038/nature15739 (b) Rojas, A. J.; Pentelute, B. L.; Buchwald, S. L. Org. Lett. 2017, 19, 4263. DOI: 10.1021/acs.orglett.7b01911
  11. Chan, A. O.-Y.; Tsai, J. L.-L.; Lo, V. K.-Y.; Li, G.-L.; Wong, M.-K.; Che, C.-M. Chem. Commun. 2013, 49, 1428. doi:10.1039/C2CC38214H

関連書籍

[amazonjs asin=”0123822394″ locale=”JP” title=”Bioconjugate Techniques, Third Edition”][amazonjs asin=”1493960962″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 高知・フュルスナー クロスカップリング Kochi-Furstn…
  2. シャウ ピリミジン合成 Shaw Pyrimidine Synt…
  3. オーヴァーマン転位 Overman Rearrangement
  4. ベティ反応 Betti Reaction
  5. クロム(η6-アレーン)カルボニル錯体 Cr(η6-arene)…
  6. フィッシャー インドール合成 Fischer Indole Sy…
  7. ブレデレック イミダゾール合成 Bredereck Imidaz…
  8. カンプス キノリン合成 Camps Quinoline Synt…

注目情報

ピックアップ記事

  1. 始めよう!3Dプリンターを使った実験器具DIY:3Dスキャナー活用編
  2. 有機合成化学協会誌2021年11月号:英文特集号 Special Issue in English
  3. 分析化学の約50年来の難問を解決、実用的な微量分析法を実現
  4. F. S. Kipping賞―受賞者一覧
  5. 第57回有機金属若手の会 夏の学校
  6. 分子を見分けるプラスチック「分子刷り込み高分子」(基礎編)
  7. アコニチン (aconitine)
  8. エナゴ「学術英語アカデミー」と記事の利用許諾契約を結びました
  9. 東海カーボンと三菱化学、カーボンブラックの共同会社を断念
  10. 化学物質MOCAでがん、4人労災

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP