[スポンサーリンク]

D

デス・マーチン酸化 Dess-Martin Oxidation

[スポンサーリンク]

概要

Dess-Martinペルヨージナン(DMP)は温和な酸化剤であり、第1級アルコールからアルデヒドを、第2級アルコールからケトンを得ることができる。

反応は室温付近で速やかに進行し、極めて高い官能基許容性を誇るために、複雑な化合物合成によく使用されている。

たとえば立体的に混みあったアルコール、ラセミ化しやすいα位に不斉中心を持つカルボニル化合物、α,β-不飽和アルデヒドの合成、酸・塩基に不安定な基質にも適用可能であり、アミン・スルフィド・セレ二ドなども共存可能である。

基本文献

  • Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. DOI: 10.1021/jo00170a070
  • Dess, D. B.; Matrin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. doi:10.1021/ja00019a027
  • Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. doi:10.1021/jo00103a067
  • Stevenson, P. J.; Treacy, A. B. J. C. S. Perkin Trans. 2 1997, 589. DOI: 10.1039/a605253c
  • Schröckeneder, A.; Stichnoth, D.; Mayer, p.; Trauner, D. Beil. J. Org. Chem. 2012, 8, 1523. doi:10.3762/bjoc.8.172
<Review of DMP oxidation>
<Comprehensive review for hypervalent iodines>

開発の歴史

前駆体であるIBXは1893年に始めて合成されたが、これをアセチル化して有機溶媒への溶解性を高めたDMP試薬は、Daniel Benjamin DessおよびJames Cullen Martinらによって1983年に報告された。

J. C. Martin (1928-1999) 写真:Wikipedia

反応機構

ヨウ素(V)上で酢酸と原料アルコールが配位子交換を起こし、複合体を形成する(1H-NMRによって確認されている。 J. Org. Chem. 1996, 61, 9272.)。α位の脱プロトン化を経由して酸化が起こり、アルデヒドまたはケトンを与える。機構上、二等量の酢酸が生じるが、これに対してすら不安定な化合物であっても、ピリジンやNaHCO3などを緩衝目的に共存させることにより適用できる。

1当量の水の添加が反応を加速することが知られている(J. Org. Chem. 1994, 59, 7549)。これは配位子交換によってヨウ素上に置換したヒドロキシル基の電子供与能によって、アセトキシ-ヨウ素結合の開裂速度が速くなることに起因していると考察されている。

反応例

アルコールの化学選択的酸化

官能基受容性がきわめて高い試薬の一つ。

DMP酸化に許容される官能基の一覧(Nat. Prod. Rep. 2011, 28, 1722. より引用)

MIDAボロネートは許容され、アシルボランを与える[1]。

極めてエピ化しやすい基質に対しても、立体化学を損なうことなく酸化が可能である[2]。

酸化に敏感なジヒドロピリジン骨格を傷めずにアルコールが酸化可能である事例[3]。

その他の反応形式

アルデヒドからアシルアジドへの変換[4]

温和なチオアセタールの除去・トランスアセタール化[5]

前駆体であるIBXと異なり、1,2-ジオールは開裂体を与える。

アニリドから天然物様骨格の合成[6]

天然物合成への応用

Kedarcidin Chromophoreの合成[7]

Azithromycinの合成[8]

Spongistatin2の合成[9]

Dragmacidin Dの合成[10]

実験手順

試薬の調製

試薬は2-ヨード安息香酸から容易に調製できる。オリジナルの調製法[11]では再現性に問題があったが、触媒量のTsOHを加えるアセチル化[12]、Oxoneを用いるIBX調製法[13]を用いることで、より簡単な後処理かつ高収率にDMPを得ることが出来る。

水添加プロトコルによる酸化[14]

H2O (10 μL, 0.55 mmol) をCH2Cl2 (10 mL)中に加えてピペットで吸い出すことを数回繰り返し、wet CH2Cl2を調製する。

2-フェニルシクロヘキサノール(88.4 mg, 0.502 mmol)およびDMP (321mg、0.502 mmol)の dry CH2Cl2溶液(3 mL)に、滴下漏斗でwet CH2Cl2をゆっくり加える。透明な溶液は、およそ30分後の滴下完了に近づくにつれ、濁った溶液になる。混合物をエーテルで希釈し、ロータリーエバポレータで数mLに濃縮する。30 mLのエーテルで抽出後、15 mLの10% Na2S2O3/飽和NaHCO3水溶液(1:1)、10 mLの水、10 mLの飽和食塩水で洗浄する。洗浄に使った水層を20 mLのエーテルで逆抽出し、この有機層を水および飽和食塩水で洗浄した。合わせた有機層を硫酸ナトリウムで乾燥し、濃縮する。フラッシュクロマトグラフィー (hexane/AcOEt = 20:1→10:1)で精製することで、2−フェニルシクロヘキサノン (84.7 mg、97%)を 結晶性固体として得る。

実験のコツ・テクニック

  • 反応後の後処理は簡便である。反応混合物をエーテルで希釈後、NaOH水溶液あるいはNaHCO3/Na2S2O3水溶液を加え抽出するか、直接シリカゲルカラムにより分離することが可能である。
  • ごく最近までその爆発性ゆえに市販は為されていなかったが、改良合成法の開発に伴い、販売が再開された。しかしながら比較的高価な試薬であり、大量に用いる場合には自前で調製する必要がある。後処理時の水をいかに除去するかによって活性が異なってくる。
  • DMPおよび前駆体のIBXはヨウ素のhypervalent化合物であることから爆発性についての危険が指摘されており、反応スケールや取扱には相応の注意を払うべきである。

参考文献

  1. He, Z.; Trinchera, P.; Adachi, S.; St Denis, J. D.; Yudin, A. K. Angew. Chem. Int. Ed. 2012, 51, 11092. doi:10.1002/anie.201206501
  2. Myers, A. G.; Zhong, B.; Movassaghi, M.; Kung, D. W.; Lanman, B. A.; Kwon, S. Tetrahedron Lett. 2000, 41, 1359. doi:10.1016/S0040-4039(99)02293-5
  3. Nelson, J. K.; Burkhart, D. J.; McKenzie, A.; Natale, N. R. Synlett 2003, 2213. DOI: 10.1055/s-2003-42052
  4. Bose, D. S.; Rerddy, A. V. N. Tetrahedron Lett. 2003, 44, 3543. doi:10.1016/S0040-4039(03)00623-3
  5. Langille, N. F.; Dakin, L. A.; Panek, J. S. Org. Lett. 2003, 5, 575. doi: 10.1021/ol027518n
  6. Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 622. [abstract]
  7. Ogawa, K.; Koyama, Y.; Ohashi, I.; Sato, I.; Hirama, M. Angew. Chem. Int. Ed. 2009, 48, 1110. doi:10.1002/anie.200805518
  8. Kim, H. C.; Kang, S. H. Angew. Chem. Int. Ed. 2009, 48, 1827. doi:10.1002/anie.200805334
  9. Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.; Murase, N.; Nakayama, K. Angew. Chem. Int. Ed. 2001, 40, 196. [abstract]
  10. Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124, 13179. doi:10.1021/ja027822b
  11. Boeckman Jr., R. K.; Shao, P.; Mullins, J. J. Org. Synth. Coll. Vol. 2004, 10, 696.
  12. Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899. doi:10.1021/jo00062a040
  13. Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537. doi:10.1021/jo9824596
  14. Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. doi:10.1021/jo00103a067

関連反応

関連動画

関連書籍

関連リンク

関連記事

  1. 生体共役反応 Bioconjugation
  2. バージェス試薬 Burgess Reagent
  3. 不斉アリルホウ素化 Asymmetric Allylborati…
  4. シリル系保護基 Silyl Protective Group
  5. ダルツェンス縮合反応 Darzens Condensation
  6. 内部アルコキシ効果 Inside Alkoxy Effect
  7. コールマン試薬 Collman’s Reagent
  8. ベロウソフ・ジャボチンスキー反応 Belousov-Zhabot…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 信じられない!驚愕の天然物たち
  2. デヴィッド・ミルステイン David Milstein
  3. 宮坂 力 Tsutomu Miyasaka
  4. 空気と光からアンモニアを合成
  5. O-アシルイソペプチド法 O-acylisopeptide Method
  6. 第4回ICReDD国際シンポジウム開催のお知らせ
  7. 中谷宇吉郎 雪の科学館
  8. マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ波化学(株)10月度ウェビナー
  9. 未来切り拓くゼロ次元物質量子ドット
  10. ククルビットウリルのロタキサン形成でClick反応を加速する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?

みなさんは現在どのようなもので授業ノートを取っていますでしょうか。私が学生だったときには電子…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP