[スポンサーリンク]

D

デス・マーチン酸化 Dess-Martin Oxidation

[スポンサーリンク]

概要

Dess-Martinペルヨージナン(DMP)は温和な酸化剤であり、第1級アルコールからアルデヒドを、第2級アルコールからケトンを得ることができる。

反応は室温付近で速やかに進行し、極めて高い官能基許容性を誇るために、複雑な化合物合成によく使用されている。

たとえば立体的に混みあったアルコール、ラセミ化しやすいα位に不斉中心を持つカルボニル化合物、α,β-不飽和アルデヒドの合成、酸・塩基に不安定な基質にも適用可能であり、アミン・スルフィド・セレ二ドなども共存可能である。

基本文献

  • Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. DOI: 10.1021/jo00170a070
  • Dess, D. B.; Matrin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. doi:10.1021/ja00019a027
  • Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. doi:10.1021/jo00103a067
  • Stevenson, P. J.; Treacy, A. B. J. C. S. Perkin Trans. 2 1997, 589. DOI: 10.1039/a605253c
  • Schröckeneder, A.; Stichnoth, D.; Mayer, p.; Trauner, D. Beil. J. Org. Chem. 2012, 8, 1523. doi:10.3762/bjoc.8.172
<Review of DMP oxidation>
<Comprehensive review for hypervalent iodines>

開発の歴史

前駆体であるIBXは1893年に始めて合成されたが、これをアセチル化して有機溶媒への溶解性を高めたDMP試薬は、Daniel Benjamin DessおよびJames Cullen Martinらによって1983年に報告された。

J. C. Martin (1928-1999) 写真:Wikipedia

反応機構

ヨウ素(V)上で酢酸と原料アルコールが配位子交換を起こし、複合体を形成する(1H-NMRによって確認されている。 J. Org. Chem. 1996, 61, 9272.)。α位の脱プロトン化を経由して酸化が起こり、アルデヒドまたはケトンを与える。機構上、二等量の酢酸が生じるが、これに対してすら不安定な化合物であっても、ピリジンやNaHCO3などを緩衝目的に共存させることにより適用できる。

1当量の水の添加が反応を加速することが知られている(J. Org. Chem. 1994, 59, 7549)。これは配位子交換によってヨウ素上に置換したヒドロキシル基の電子供与能によって、アセトキシ-ヨウ素結合の開裂速度が速くなることに起因していると考察されている。

反応例

アルコールの化学選択的酸化

官能基受容性がきわめて高い試薬の一つ。

DMP酸化に許容される官能基の一覧(Nat. Prod. Rep. 2011, 28, 1722. より引用)

MIDAボロネートは許容され、アシルボランを与える[1]。

極めてエピ化しやすい基質に対しても、立体化学を損なうことなく酸化が可能である[2]。

酸化に敏感なジヒドロピリジン骨格を傷めずにアルコールが酸化可能である事例[3]。

その他の反応形式

アルデヒドからアシルアジドへの変換[4]

温和なチオアセタールの除去・トランスアセタール化[5]

前駆体であるIBXと異なり、1,2-ジオールは開裂体を与える。

アニリドから天然物様骨格の合成[6]

天然物合成への応用

Kedarcidin Chromophoreの合成[7]

Azithromycinの合成[8]

Spongistatin2の合成[9]

Dragmacidin Dの合成[10]

実験手順

試薬の調製

試薬は2-ヨード安息香酸から容易に調製できる。オリジナルの調製法[11]では再現性に問題があったが、触媒量のTsOHを加えるアセチル化[12]、Oxoneを用いるIBX調製法[13]を用いることで、より簡単な後処理かつ高収率にDMPを得ることが出来る。

水添加プロトコルによる酸化[14]

H2O (10 μL, 0.55 mmol) をCH2Cl2 (10 mL)中に加えてピペットで吸い出すことを数回繰り返し、wet CH2Cl2を調製する。

2-フェニルシクロヘキサノール(88.4 mg, 0.502 mmol)およびDMP (321mg、0.502 mmol)の dry CH2Cl2溶液(3 mL)に、滴下漏斗でwet CH2Cl2をゆっくり加える。透明な溶液は、およそ30分後の滴下完了に近づくにつれ、濁った溶液になる。混合物をエーテルで希釈し、ロータリーエバポレータで数mLに濃縮する。30 mLのエーテルで抽出後、15 mLの10% Na2S2O3/飽和NaHCO3水溶液(1:1)、10 mLの水、10 mLの飽和食塩水で洗浄する。洗浄に使った水層を20 mLのエーテルで逆抽出し、この有機層を水および飽和食塩水で洗浄した。合わせた有機層を硫酸ナトリウムで乾燥し、濃縮する。フラッシュクロマトグラフィー (hexane/AcOEt = 20:1→10:1)で精製することで、2−フェニルシクロヘキサノン (84.7 mg、97%)を 結晶性固体として得る。

実験のコツ・テクニック

  • 反応後の後処理は簡便である。反応混合物をエーテルで希釈後、NaOH水溶液あるいはNaHCO3/Na2S2O3水溶液を加え抽出するか、直接シリカゲルカラムにより分離することが可能である。
  • ごく最近までその爆発性ゆえに市販は為されていなかったが、改良合成法の開発に伴い、販売が再開された。しかしながら比較的高価な試薬であり、大量に用いる場合には自前で調製する必要がある。後処理時の水をいかに除去するかによって活性が異なってくる。
  • DMPおよび前駆体のIBXはヨウ素のhypervalent化合物であることから爆発性についての危険が指摘されており、反応スケールや取扱には相応の注意を払うべきである。

参考文献

  1. He, Z.; Trinchera, P.; Adachi, S.; St Denis, J. D.; Yudin, A. K. Angew. Chem. Int. Ed. 2012, 51, 11092. doi:10.1002/anie.201206501
  2. Myers, A. G.; Zhong, B.; Movassaghi, M.; Kung, D. W.; Lanman, B. A.; Kwon, S. Tetrahedron Lett. 2000, 41, 1359. doi:10.1016/S0040-4039(99)02293-5
  3. Nelson, J. K.; Burkhart, D. J.; McKenzie, A.; Natale, N. R. Synlett 2003, 2213. DOI: 10.1055/s-2003-42052
  4. Bose, D. S.; Rerddy, A. V. N. Tetrahedron Lett. 2003, 44, 3543. doi:10.1016/S0040-4039(03)00623-3
  5. Langille, N. F.; Dakin, L. A.; Panek, J. S. Org. Lett. 2003, 5, 575. doi: 10.1021/ol027518n
  6. Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 622. [abstract]
  7. Ogawa, K.; Koyama, Y.; Ohashi, I.; Sato, I.; Hirama, M. Angew. Chem. Int. Ed. 2009, 48, 1110. doi:10.1002/anie.200805518
  8. Kim, H. C.; Kang, S. H. Angew. Chem. Int. Ed. 2009, 48, 1827. doi:10.1002/anie.200805334
  9. Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.; Murase, N.; Nakayama, K. Angew. Chem. Int. Ed. 2001, 40, 196. [abstract]
  10. Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124, 13179. doi:10.1021/ja027822b
  11. Boeckman Jr., R. K.; Shao, P.; Mullins, J. J. Org. Synth. Coll. Vol. 2004, 10, 696.
  12. Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537. doi:10.1021/jo9824596
  13. Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899. doi:10.1021/jo00062a040
  14. Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. doi:10.1021/jo00103a067

関連反応

関連動画

関連書籍

関連リンク

関連記事

  1. 求核的フルオロアルキル化 Nucleophilic Fluoro…
  2. 菅沢反応 Sugasawa Reaction
  3. カルボン酸の保護 Protection of Carboxyli…
  4. リッター反応 Ritter Reaction
  5. 芳香族メチルの酸化 Oxidation of Methyl Gr…
  6. クライゼン転位 Claisen Rearrangement
  7. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 H…
  8. ジイミド還元 Diimide Reduction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マリア フリッツァニ-ステファノポウロス Maria Flytzani-Stephanopoulos
  2. 2015年化学生物総合管理学会春季討論集会
  3. ナノチューブを引き裂け! ~物理的な意味で~
  4. 米国の化学系ベンチャー企業について調査結果を発表
  5. 鄧 青雲 Ching W. Tang
  6. ダン・シェヒトマン Daniel Shechtman
  7. 「遠隔位のC-H結合を触媒的に酸化する」―イリノイ大学アーバナ・シャンペーン校・M.C.White研より
  8. C-H酸化反応の開発
  9. わずか6工程でストリキニーネを全合成!!
  10. 新しい糖尿病治療薬認可へ~人体機能高めるタイプから吸入式まで

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

四国化成の新規複素環化合物群

四国化成のイミダゾール誘導体四国化成ではこれまでに蓄積した複素環合成技術を活かし、ヘテロ元素を含…

四国化成工業ってどんな会社?

私たち四国化成工業株式会社は、、企業理念「独創力」のもと「これまでになかったモノ」を「人とは違うアプ…

第15回ケムステVシンポジウム「複合アニオン」を開催します!

第14回ケムステVシンポが2月3日に開催されますが、その二日後にもアツいケムステVシンポが開催されま…

不斉反応ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

2021年化学企業トップの年頭所感を読み解く

2021年が本格始動し始めている中、化学企業のトップが年の初めに抱負や目標を述べる年頭所感を続々と発…

転職を成功させる「人たらし」から学ぶ3つのポイント

転職活動を始めた場合、まずは自身が希望する職種、勤務地、年収などの条件を元にインターネットで求人を検…

mRNAワクチン(メッセンジャーRNAワクチン)

病原体のタンパクをコードしたmRNAをベースとしたワクチン。従来のワクチンは、弱毒化・不活化した病原…

第139回―「超高速レーザを用いる光化学機構の解明」Greg Scholes教授

第139回の海外化学者インタビューはグレッグ・ショールズ教授です。トロント大学化学科(訳注:現在はプ…

Chem-Station Twitter

PAGE TOP