[スポンサーリンク]

D

デス・マーチン酸化 Dess-Martin Oxidation

[スポンサーリンク]

概要

Dess-Martinペルヨージナン(DMP)は温和な酸化剤であり、第1級アルコールからアルデヒドを、第2級アルコールからケトンを得ることができる。

反応は室温付近で速やかに進行し、極めて高い官能基許容性を誇るために、複雑な化合物合成によく使用されている。

たとえば立体的に混みあったアルコール、ラセミ化しやすいα位に不斉中心を持つカルボニル化合物、α,β-不飽和アルデヒドの合成、酸・塩基に不安定な基質にも適用可能であり、アミン・スルフィド・セレ二ドなども共存可能である。

基本文献

  • Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. DOI: 10.1021/jo00170a070
  • Dess, D. B.; Matrin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. doi:10.1021/ja00019a027
  • Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. doi:10.1021/jo00103a067
  • Stevenson, P. J.; Treacy, A. B. J. C. S. Perkin Trans. 2 1997, 589. DOI: 10.1039/a605253c
  • Schröckeneder, A.; Stichnoth, D.; Mayer, p.; Trauner, D. Beil. J. Org. Chem. 2012, 8, 1523. doi:10.3762/bjoc.8.172
<Review of DMP oxidation>
<Comprehensive review for hypervalent iodines>

開発の歴史

前駆体であるIBXは1893年に始めて合成されたが、これをアセチル化して有機溶媒への溶解性を高めたDMP試薬は、Daniel Benjamin DessおよびJames Cullen Martinらによって1983年に報告された。

J. C. Martin (1928-1999) 写真:Wikipedia

反応機構

ヨウ素(V)上で酢酸と原料アルコールが配位子交換を起こし、複合体を形成する(1H-NMRによって確認されている。 J. Org. Chem. 1996, 61, 9272.)。α位の脱プロトン化を経由して酸化が起こり、アルデヒドまたはケトンを与える。機構上、二等量の酢酸が生じるが、これに対してすら不安定な化合物であっても、ピリジンやNaHCO3などを緩衝目的に共存させることにより適用できる。

1当量の水の添加が反応を加速することが知られている(J. Org. Chem. 1994, 59, 7549)。これは配位子交換によってヨウ素上に置換したヒドロキシル基の電子供与能によって、アセトキシ-ヨウ素結合の開裂速度が速くなることに起因していると考察されている。

反応例

アルコールの化学選択的酸化

官能基受容性がきわめて高い試薬の一つ。

DMP酸化に許容される官能基の一覧(Nat. Prod. Rep. 2011, 28, 1722. より引用)

MIDAボロネートは許容され、アシルボランを与える[1]。

極めてエピ化しやすい基質に対しても、立体化学を損なうことなく酸化が可能である[2]。

酸化に敏感なジヒドロピリジン骨格を傷めずにアルコールが酸化可能である事例[3]。

その他の反応形式

アルデヒドからアシルアジドへの変換[4]

温和なチオアセタールの除去・トランスアセタール化[5]

前駆体であるIBXと異なり、1,2-ジオールは開裂体を与える。

アニリドから天然物様骨格の合成[6]

天然物合成への応用

Kedarcidin Chromophoreの合成[7]

Azithromycinの合成[8]

Spongistatin2の合成[9]

Dragmacidin Dの合成[10]

実験手順

試薬の調製

試薬は2-ヨード安息香酸から容易に調製できる。オリジナルの調製法[11]では再現性に問題があったが、触媒量のTsOHを加えるアセチル化[12]、Oxoneを用いるIBX調製法[13]を用いることで、より簡単な後処理かつ高収率にDMPを得ることが出来る。

水添加プロトコルによる酸化[14]

H2O (10 μL, 0.55 mmol) をCH2Cl2 (10 mL)中に加えてピペットで吸い出すことを数回繰り返し、wet CH2Cl2を調製する。

2-フェニルシクロヘキサノール(88.4 mg, 0.502 mmol)およびDMP (321mg、0.502 mmol)の dry CH2Cl2溶液(3 mL)に、滴下漏斗でwet CH2Cl2をゆっくり加える。透明な溶液は、およそ30分後の滴下完了に近づくにつれ、濁った溶液になる。混合物をエーテルで希釈し、ロータリーエバポレータで数mLに濃縮する。30 mLのエーテルで抽出後、15 mLの10% Na2S2O3/飽和NaHCO3水溶液(1:1)、10 mLの水、10 mLの飽和食塩水で洗浄する。洗浄に使った水層を20 mLのエーテルで逆抽出し、この有機層を水および飽和食塩水で洗浄した。合わせた有機層を硫酸ナトリウムで乾燥し、濃縮する。フラッシュクロマトグラフィー (hexane/AcOEt = 20:1→10:1)で精製することで、2−フェニルシクロヘキサノン (84.7 mg、97%)を 結晶性固体として得る。

実験のコツ・テクニック

  • 反応後の後処理は簡便である。反応混合物をエーテルで希釈後、NaOH水溶液あるいはNaHCO3/Na2S2O3水溶液を加え抽出するか、直接シリカゲルカラムにより分離することが可能である。
  • ごく最近までその爆発性ゆえに市販は為されていなかったが、改良合成法の開発に伴い、販売が再開された。しかしながら比較的高価な試薬であり、大量に用いる場合には自前で調製する必要がある。後処理時の水をいかに除去するかによって活性が異なってくる。
  • DMPおよび前駆体のIBXはヨウ素のhypervalent化合物であることから爆発性についての危険が指摘されており、反応スケールや取扱には相応の注意を払うべきである。

参考文献

  1. He, Z.; Trinchera, P.; Adachi, S.; St Denis, J. D.; Yudin, A. K. Angew. Chem. Int. Ed. 2012, 51, 11092. doi:10.1002/anie.201206501
  2. Myers, A. G.; Zhong, B.; Movassaghi, M.; Kung, D. W.; Lanman, B. A.; Kwon, S. Tetrahedron Lett. 2000, 41, 1359. doi:10.1016/S0040-4039(99)02293-5
  3. Nelson, J. K.; Burkhart, D. J.; McKenzie, A.; Natale, N. R. Synlett 2003, 2213. DOI: 10.1055/s-2003-42052
  4. Bose, D. S.; Rerddy, A. V. N. Tetrahedron Lett. 2003, 44, 3543. doi:10.1016/S0040-4039(03)00623-3
  5. Langille, N. F.; Dakin, L. A.; Panek, J. S. Org. Lett. 2003, 5, 575. doi: 10.1021/ol027518n
  6. Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 622. [abstract]
  7. Ogawa, K.; Koyama, Y.; Ohashi, I.; Sato, I.; Hirama, M. Angew. Chem. Int. Ed. 2009, 48, 1110. doi:10.1002/anie.200805518
  8. Kim, H. C.; Kang, S. H. Angew. Chem. Int. Ed. 2009, 48, 1827. doi:10.1002/anie.200805334
  9. Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.; Murase, N.; Nakayama, K. Angew. Chem. Int. Ed. 2001, 40, 196. [abstract]
  10. Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124, 13179. doi:10.1021/ja027822b
  11. Boeckman Jr., R. K.; Shao, P.; Mullins, J. J. Org. Synth. Coll. Vol. 2004, 10, 696.
  12. Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899. doi:10.1021/jo00062a040
  13. Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537. doi:10.1021/jo9824596
  14. Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. doi:10.1021/jo00103a067

関連反応

関連動画

関連書籍

[amazonjs asin=”B00FO0SMVK” locale=”JP” title=”Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds (English Edition)”][amazonjs asin=”B01GJ8I4WW” locale=”JP” title=”Hypervalent Iodine Chemistry (Topics in Current Chemistry Book 373) (English Edition)”][amazonjs asin=”0470007222″ locale=”JP” title=”Hypervalent Iodine in Organic Chemistry: Chemical Transformations”]

関連リンク

関連記事

  1. ポーソン・カーン反応 Pauson-Khand Reaction…
  2. 向山・鈴木グリコシル化反応 Mukaiyama-Suzuki G…
  3. コーリー・チャイコフスキー反応 Corey-Chaykovsky…
  4. チオール-エン反応 Thiol-ene Reaction
  5. ライセルト反応 Reissert Reaction
  6. エッシェンモーザーメチレン化 Eschenmoser Methy…
  7. フィッツィンガー キノリン合成 Pfitzinger Quino…
  8. ジオキシラン酸化 Oxidation with Dioxiran…

注目情報

ピックアップ記事

  1. 森田浩介 Kosuke Morita
  2. 反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】
  3. ベンゼンスルホヒドロキサム酸を用いるアルデヒドとケトンの温和な条件下でのアセタール保護反応
  4. 第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!
  5. シイタケ由来成分に抗アレルギー効果を確認
  6. 【 Web seminar by Microwave Chemical 】 マイクロ波化学(株)/ 7月26日(水)欧州向けウェビナー開催
  7. パリック・デーリング酸化 Parikh-Doering Oxidation
  8. 尿から薬?! ~意外な由来の医薬品~ あとがき
  9. 京大融合研、産学連携で有機発光トランジスタを開発
  10. シンガポールへ行ってきた:NTUとNUS化学科訪問

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP