[スポンサーリンク]

ケムステナビ

BASFとはどんな会社?-2

前回の続き。ここ10年程度の主な研究成果をご紹介しましょう。

Tshozoです。皆さんはボスに叱られて不整脈になったことはありますか?私はあります。

前回に続き、BASFの研究成果・活動の一例、HPPO法による酸化プロピレン(PO:Propylene Oxide)の事業化についてご紹介します。他にもStrobilurin Aの合成や光学活性アミンの合成、イオン性液体の実用化など数多くあるのですが、ボリュームが大きくなるので今回はこれだけに留め、他はまた次の機会にご紹介します。

では無駄口たたかずガンガンいきます。

 

”HPPO法によるPOの新規合成法事業化(2008年・Dowと協業)”

POはプロピレンから合成される工業製品の中間体です。これを原料として出来るグリコール類やポリオール類は、塗膜や薄膜形成のための溶媒・不凍液・ポリウレタンモノマ(又は変性剤)・染色剤など多くの用途に使用されており、生分解性も比較的高いことから工業的に極めて重要な位置にあります。年間生産量は何と650万トンに達します。

BASF_11.PNG

POの主な材料展開先

 で、従来そのPOをどう合成していたか。工業的には主にA.プロピレンからクロロヒドリンを経由する合成方法 と、 B. スチレンモノマ-PO法 の2種類がありました。

BASF_12

従来のPO合成法・上がAで下がB

 これらの反応、実際には副生成物を多く発生させてしまうという問題を抱えていました。まずAは相当量の塩化カルシウム(CaCl2・重量比でPOの1.5倍)を発生しますし、Bは出来たスチレンが副生成物になります。

これに対し住友化学が2006年に中間体としてクメンを使用する方法を編み出しました。具体的には上記Bの左側のベンジルアルコールではなくクミルアルコールを使うものです。これを水素で還元後、Airで酸化させてクメンパーヒドロキシドを作り左側を回すプロセスを使っています(実は工業的にはこちらの住友化学の方が数十万トンレベルの量産に先鞭をつけました・しかし個人的にはクメンパーヒドロキシドが多段反応であるため、収率はそこまでよくないのではないかという気がします)。

これらの手法をさらに進化させ、より低コストでPOを供給するにはどうすればよいか、という要求に応えたのがBASFがDowと協業で完成させたHPPO法(過酸化水素法)でした。

BASF_13.PNG

HPPO合成法・理屈上は出る生成物が水だけ!

反応温度も30~80℃とマイルド、ただし圧力はなぜか10~30barの低圧のもよう

 これを実現したのは、BASFが誇る触媒技術です。チタンシリケート系不均一触媒を用いて、下記のようなスキームで推定される反応によりPOを合成しています。この反応は以前からよく知られていたようですが、実際の転化率は50%程度と低かったために採用されていなかったとのことです。BASFは触媒を工夫することでこの転化率を90%以上に引き上げ(95%以上とも言われます)、実用化にこぎつけました。

BASF_14

HPPO合成法のメカニズム・メタノールが重要な役割を果たしている

 上図のメカニズムを解明しているとすると、副反応が出難いようにエンジニアリング上の工夫をしている可能性が高いです。

ただプロセスとしてはまだまだ未完成で、安定供給できる過酸化水素プラントを真横に作らなければならんので投資コストが高いとか(本件はDowのほか、過酸化水素最大手のSolvayも巻き込んでます。本反応は安価な過酸化水素が供給されないとコスト競争力が低くなりますので、過酸化水素の価格決定力を持つSolvayを巻き込むのは当然の判断なのでしょう)、水に溶解したメタノールの分離に熱やスチームを大量に消費するとか下記のような副反応を起こすなどの問題を抱えています。

これらの点は先に挙げた住友化学でも同様の問題を抱えていると思われ、どちらがより単純な系でスケールメリットを以って廉価なPOを供給できるのか、というところの戦いになると思われます。正直技術的にはレベルがいずれも高く、優劣つけ難い勝負になるのではないかと予想しています。

 BASF_15.PNG

生じる副反応・特に過酸化水素があるせいで不可避的に発生する

真ん中の反応が厄介と思われる

 ということで今回はここまで。次回はよりBASFらしい研究成果である、イオン性液体について取り上げます。

【注 ・・・華々しく事業化されたこのHPPO法ですが、欧州地域はともかくアジア地域においてBASFは協業のDowと「地域ごとの生産量・供給量と取り分」に関し同意に至らなかったため、プロジェクトから手を引くという決断を下しています。ここらへんはビジネスとしての厳しさ、ということでしょう】

●今回の参考スライド:こちらです

The following two tabs change content below.
Tshozo

Tshozo

化学のチカラが世界を変える、と信じるとあるメーカ勤務の開発さん。元々の専門は電気なんですけど。 クラウジウスとかファントホッフの名前に反応する珍種がいたらそれは私です。

関連記事

  1. 有機反応を俯瞰する ーリンの化学 その 1 (Wittig 型シ…
  2. Reaxys Ph.D Prize2014ファイナリスト45名発…
  3. 海底にレアアース資源!ランタノイドは太平洋の夢を見るか
  4. 鉄錯体による触媒的窒素固定のおはなし-2
  5. 科学予算はイギリスでも「仕分け対象」
  6. 水素社会~アンモニアボラン~
  7. ケミカル・アリに死刑判決
  8. 【書籍】クロスカップリング反応 基礎と産業応用

コメント

  • トラックバックは利用できません。

  • コメント (1)

  1. HPPO法

注目情報

ピックアップ記事

  1. 改正 研究開発力強化法
  2. 浅野・県立大教授が化学技術賞
  3. 有機薄膜太陽電池の”最新”開発動向
  4. クノール ピロール合成 Knorr Pyrrole Synthesis
  5. ビシュラー・メーラウ インドール合成 Bischler-Mohlau Indole Synthesis
  6. 製薬特許売買市場、ネットに創設へ…大商とUFJ信託
  7. テストには書けない? カルボキシル化反応の話
  8. 池田 富樹 Tomiki Ikeda
  9. Glenn Gould と錠剤群
  10. アトムエコノミー / atom economy

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界

内容2004年にブレークしたグラフェンは,電子材料はじめさまざまな応用が期待される新素材の担…

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

Chem-Station Twitter

PAGE TOP