[スポンサーリンク]

odos 有機反応データベース

シリル系保護基 Silyl Protective Group

アルコール→有機金属化合物

 

概要

  • シリルエーテルは、アルコールの保護に有効である。研究室規模の精密合成では、必ずといっていいほど用いられる。
  • 3つの置換基R’は2つ以上同じものが用いられる。全て異なるとケイ素原子が不斉中心となってしまい、ジアステレオマーの取り扱いが面倒なためである。
  • TBS、TIPS、TBDPS基は立体的にかさ高いため、二級・三級アルコール存在下に一級アルコールのみを選択的に保護することが可能である。

基本文献

Review

開発の歴史

アルコールのシリル化剤として用いたのは米国のE. J. Coreyがはじめてである。1972年にTBSClを塩基としてイミダゾール存在下DMF溶媒中アルコールと反応させると収率よくシリル化体が得られることを発見した。さらにテトラブチルアンモニウムフロリド(TBAF)により除去可能であることも示した。現在ではもっとも頻繁に用いられる保護基の1つとなっている。

 

反応機構

1. 保護
ケイ素化学の常として、置換反応は5配位中間体を経由して進行する。脱離基(最も電気陰性な置換基)がアピカル位を占めるよう擬回転を起こしてから、脱離が起こる。
oh-si-3.gif
2.脱保護
保護の場合と同様、5配位中間体を経由して進行する。酸性条件であっても同様である。シリルカチオンは不安定なため、炭素置換におけるいわゆるSN1経路をとることはない。フッ素源で脱保護される駆動力は、強いSi-F結合形成による(Si-F結合はSi-O結合よりもおよそ30kcal/molほど強い)。
oh-si-4.gif

反応例

  • 保護・脱保護の典型例[1] oh-si-5.gif

 

  • NaHを塩基として用いるとジオールのmono-Protectionが効率よく行える。[2] oh-si-1.gif

 

  • ヨウ素触媒を用いるTMS保護[3]PG_silyl_7.gif

 

  • Si-BEZAを用いる保護[4]:三級アルコールのシリル保護ができる穏和な条件。 PG_silyl_8.gif

 

  • トリスペンタフルオロフェニルボランを用いたシリルエーテル合成[5]:官能基受容性の高さは勿論のこと、混み合ったアルコールを短時間で効果的に保護できる。 PG_silyl_9.gif
    PG_silyl_10.gif

 

  • より嵩高いシリル保護基BIBS[7]:Di-tert-butylisobutylsilyl基は最も嵩高いシリル基である。TIPSよりも1300倍塩基に強い。

2016-01-29_09-25-56

  • ケイ素ケイ素結合をもつトリス(トリアルキル)シリル基(スーパーシリル基)[8]:カルボン酸の保護基として用いることができる。例えば、トリス(トリエチル)シリル基は非常に嵩高いためカルボニル基に求核攻撃が進行しない。

2016-01-29_11-16-17

 

実験手順

 

PG_silyl_11.gif
アルコール(4.40g, 13.6 mmol)をDMF(90 mL)に溶解し、0℃にてイミダゾール(3.88g, 56.9 mmol) とクロロt-ブチルジメチルシラン(4.09g, 27.1 mmol)を加える。室温に昇温し,16時間撹拌する。十分量の水を加えて反応を停止し、水相を酢酸エチルで3回抽出する。有機相を硫酸マグネシウムで乾燥、濾過後濃縮、残渣をカラムクロマトグラフィ(ヘキサン/酢酸エチル=50/1)にて精製。目的物を黄色液体として得る(99%収率)。[6]

※ R’3SiCl/イミダゾールまたはR’3SiOTf/2,6-ルチジンの条件を用いることで、高収率でシリルエーテルを得ることができる。
後者のほうが反応性が高く、低反応性である二級、三級アルコールの保護目的に適している。
※ 脱保護は酸性条件下加水分解(AcOH-THF-H2O etc)あるいはフッ化物イオン(TBAF etc)による方法が一般的である。後者は強力なSi-F結合形成を駆動力とする。

 

実験のコツ・テクニック

※DMFを溶媒として使った際は、クエンチ時に多量の水で薄めた後、ヘキサン(or石油エーテル)/酢酸エチル 混合溶媒系で抽出すると良い。DMFが有機相に来にくくなり、抽出が楽になる。

※ 以下に良く使われる保護基を列挙しておく。TBSが一般的にFirst Choiceとして用いられるが、その他もよく使われている。TMS基はかなり外れやすいため、3級アルコールなどのかさ高いアルコールの保護、もしくは一時的保護目的以外では用いられることは少ない。
PG_silyl_2.gif

※ 酸性条件下での安定性はTMS(1)<TES(64)<TBS(20,000)<TIPS(700,000)<TBDPS(5,000,000)であり、塩基性条件では、TMS(1)<TES(10-100)<TBS, TBDPS(20,000)<TIPS(100,000)である(括弧内の数値はTMSを1とした際の強さを表す)フッ化物イオンに対する安定性はTMS<TES<TIPS<TBS<TBDPSの順である。

2016-01-29_09-14-28

塩基および酸性メタノール溶液中のシリルエーテルの半減期

2016-01-29_09-14-45

TBAF, HClO4を作用させた場合のシリルエーテルの半減期

※ TBAF条件での脱保護後に生じるアンモニウムアルコキシドは強塩基として働くので、塩基に弱い化合物には用いることが出来ない。緩衝目的で酢酸を加えたり、さらに温和な条件(HF・Py、3HF・Et3Nなど)を試す必要がある。

 

参考文献

  1. Oguri, H.; Hishiyama, S.; Oishi, T.;Hirama, M. Synlett 1995, 1252. DOI: 10.1055/s-1995-5259
  2. McDougal, P. G.; Rico, J. G.; Oh, Y.; Condon, B. D. J. Org. Chem. 1986, 51, 3388. DOI: 10.1021/jo00367a033
  3. Karimi, B.; Golshani, B. J. Org. Chem. 200065, 7228. DOI: 10.1021/jo005519s
  4. Misaki, T.; Kurihara, M.; Tanabe, Y.; Chem. Commun., 2001, 2478. doi:10.1039/b107447b
  5. Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E. J. Org. Chem. 1999, 64, 4887. doi:10.1021/jo9903003
  6. Panek, J. S. et al. J. Org. Chem. 2009, 74, 1897. DOI: 10.1021/jo802269q
  7. Liang, H.; Corey, E. J. Org. Lett. 201113, 4120. DOI:10.1021/ol201640y
  8. tan, J.; Akakura, M.; Yamamoto, H. Angew. Chem. Int. Ed. 2013, 52, 7198. DOI:10.1002/anie.201300102
     

 

関連反応

 

関連書籍

 

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. ターボグリニャール試薬 Turbo Grignard Reage…
  2. ビシュラー・ナピエラルスキー イソキノリン合成 Bischler…
  3. 1,2-/1,3-ジオールの保護 Protection of 1…
  4. ゲヴァルト チオフェン合成 Gewald Thiophene S…
  5. エーテル系保護基 Ether Protective Group
  6. ウィルゲロット反応 Willgerodt Reaction
  7. ノリッシュ反応 Norrish Reaction
  8. コーリー・ギルマン・ガネム酸化 Corey-Gilman-Gan…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. オーヴァーマン転位 Overman Rearrangement
  2. 有機化合物合成中に発火、理化学研が半焼--仙台 /宮城
  3. ハーバード大Whitesides教授プリーストリーメダルを受賞
  4. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  5. 国際シンポジウム;創薬・天然物―有機合成化学の展望―
  6. 鉄とヒ素から広がる夢の世界
  7. 人を器用にするDNAーナノ化学研究より
  8. ハウアミンAのラージスケール合成
  9. 2007年度イグノーベル賞決定
  10. リチウム Lithium -リチウム電池から医薬品まで

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

エッセイ「産業ポリマーと藝術ポリマーのあいだ」について

Tshozoです。先日Angewandte Chemie International Edition…

Chem-Station Twitter

PAGE TOP