[スポンサーリンク]

odos 有機反応データベース

四酸化ルテニウム Ruthenium Tetroxide (RuO4)

[スポンサーリンク]

概要

超強力な酸化剤として働く。通常の酸化条件では達成不可能なベンゼン環やオレフィンの酸化的開裂が穏和な条件で行える。

しかしながら強力さゆえの副反応もしばしば起こり、基質を選ぶことも少なくない。使用タイミングをよく吟味する必要がある。

ルテニウムは高価であるため、触媒量の前駆体と安価な再酸化剤を用いてRu(VIII)を系中発生させて用いるのが定法である。

基本文献

  • Djerassi, C.; Engle, R. R. J. Am. Chem. Soc. 1953, 75, 3838. DOI: 10.1021/ja01111a507
  • Berkowitz, L. M.; Rylander, P. N. J. Am. Chem. Soc. 1958, 80, 6682. DOI: 10.1021/ja01557a053
  • Wolfe, S.; Hasan, S. K.; Campbell, J. R. Chem. Commun. 1970, 142.
  • Charlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936. DOI: 10.1021/jo00332a045
<review>
  • 実験化学講座第5版 「有機化合物の合成V 酸化反応」 3・2
  • Piccialli, V. Molecules 2014, 19, 6534. doi:10.3390/molecules19056534

開発の経緯

1953年にDjerassiおよびEngleらによって、有機化合物の当量酸化剤としての用途が示された。その後、1981年にSharplessらによって触媒量のルテニウムを用いる標準条件(反応機構項を参照)が確立されるに至り、広く用いられるようになった。

反応機構

溶媒は試薬と反応しない四塩化炭素が通常用いられる。エーテル溶媒などとは激しく反応するため用いることが出来ない。カルボン酸などの基質/生成物が配位すると、触媒が失活する場合がある。配位性共溶媒としてアセトニトリルを加えるとこれが防げる。

このような理由から、RuCl3(cat.)-NaIO4/CH3CN-CCl4-H2Oが標準条件となっている。

本標準条件は二相系であり、系中生成する活性種RuO4が有機溶媒中の酸化によって消費され、水溶性のRuO2になる。これが水溶性の再酸化剤によって酸化され、RuO4が再生する。相間移動触媒を添加すると反応が促進される。

反応例

オレフィンの酸化的開裂

反応機構項の表に示すように、RuO4はオレフィンを開裂してカルボン酸やケトンを与える。典型的な活用法の一つである。この特性から、オゾン酸化の代替法として考えることができる。条件を上手く選ぶことで、開裂をアルデヒド酸化度で止めることも出来る[1]。

オレフィンのcis-ジヒドロキシル化

毒性の強いOsO4を用いずに反応が行える点、極めて短時間で進行する点が特長。初期の触媒条件[2]にブレンステッド酸やルイス酸の添加[3]することで、適用が大幅に改善された。

ポリエンの酸化的環化反応

適切な位置に他のオレフィンが存在すると、酸化的な環化反応が起こりテトラヒドロフラン、テトラヒドロピラン構造を与える。

Molecules 2014, 19, 6534.より引用)

カスケード反応様式に付すことで、多環式化合物を得ることも出来る[4]。


エーテルα位・アミンα位・ベンジル位C-H結合の酸化

メチレン炭素をα位に持つエーテルはRuO4で酸化され、エステルまたはラクトンを与える[5]。環状第三級アミンやアミドの場合も同様の条件で窒素隣接メチレンが酸化され、ラクタムまたはイミドを与える。メチン炭素を持つものは、開裂してケトンへと変換される。このような反応が進行するため、ジオキサンやTHFなどのエーテル系溶媒は本試薬に用いることが出来ない。


また、MOMエーテルベンジルエーテルは比較的丈夫な保護基であるが、RuO4で酸化することで、メチルカーボネートやベンゾイルエステルに変換できる[6]。こうすることで穏和な塩基性条件で除去可能となる。

アルカンのC-H酸化

RuO4でこの種の反応が進行することは知られていたが、近年のC-H変換化学の加熱により、再検討されるに至っている。KBrO3がこの目的の再酸化剤として優れることがDu Boisらによって示されている[7]。C-H結合の反応性は3級>2級>1級の順列に従う。


ベンゼン環の酸化的開裂

電子豊富ベンゼン環はRuO4で開裂し、カルボン酸を与える[8]。この目線に従えば、ベンゼン環をカルボン酸の等価体と捉えることができる。ただし、他の酸化されやすい官能基(オレフィン、アルコールなど)が共存する場合には、そちらの方が優先的に酸化されてしまう。

全合成への適用例

hikizimycinの合成[9]


(+)-Grayanotoxin IIIの全合成[10]


ザラゴジン酸Cの全合成[11]:内部アルキンはα-ジケトンに酸化される。

実験手順

5-デセンの酸化的開裂[12]


フラスコにマグネチックスターラー、四塩化炭素(2mL)-アセトニトリル(2mL)-水(3mL)を入れ、(E)-5-デセン(189μL、1 mmol)および過ヨウ素酸ナトリウム(877mg、4.1 eq)を加える。この二相性溶液に三塩化ルテニウム水和物(5mg、2.2mol%)を加え、 室温で2時間激しく撹拌する。その後、ジクロロメタン(10mL)を加え、有機相を分離する。 これをエーテル(20mL)で希釈し、セライト濾過した後に濃縮する。粗生成物をbulb-tobulb蒸留により精製し、ペンタン酸(180mg、88%)を得た。 反応は20 mmolスケールにまで問題なく増量可能である。

実験のコツ・テクニック

※ルテニウム残渣はショートパッドシリカゲルカラムで簡便に除ける。
※温度制御(室温~40℃)が重要。

参考文献

  1. Yang, D.; Zhang, C. J. Org. Chem. 2001, 66, 4814. DOI: 10.1021/jo010122p
  2. (a) Shing, T. K. M.; Tai, V. W.-F.; Tam, E. K. W. Angew. Chem. Int. Ed. 1994, 33, 2312. (b) Shing, T. K. M.; Tam, E. K. W.; Tai, V. W. -F.; Chung, I. H. F.; Jiang, Q. Chem. Eur. J. 1996, 2, 50. (c) Shing, T. K. M.; Tam, E. K. W. Tetrahedron Lett. 1999, 40, 2179. doi:10.1016/S0040-4039(99)00128-8
  3. (a) Plietker, B.; Niggemann, M. Org. Lett. 2003, 5, 3353. DOI: 10.1021/ol035335a (b) Plietker, B.; Niggemann, M.; Pollrich, A. Org. Biomol. Chem. 2004, 2, 1116. DOI: 10.1039/b316546a (c) Plietker. B.; Niggemann, M. J. Org. Chem. 2005, 70, 2402. DOI: 10.1021/jo048020x
  4. Bifulco, G.; Caserta, T.; Gomez-Paloma, G.; Piccialli, V. Tetrahedron Lett. 2002, 43, 9265. doi:10.1016/S0040-4039(02)02304-3
  5. (a) Lee, D.G.; van den Hengh, M. Can. J. Chem. 1972, 50, 3129. doi: 10.1139/v72-501 (b) Smith, A. B.; Scarborough, R. M., Jr. Synth. Commun. 1980, 10, 205. doi: 10.1080/00397918008064223
  6. Schuda, P. F.; Cichowicz, M. B.; Heimann, M. R. Tetrahedron Lett. 1983, 24, 3829. doi:10.1016/S0040-4039(00)94286-2
  7. McNeill, E.; Du Bois, J. J. Am. Chem. Soc. 2010, 132, 10202. DOI: 10.1021/ja1046999
  8. Teresa Nunez, M.; Martin, V. S. J. Org. Chem. 1990, 55, 1928. DOI: 10.1021/jo00293a044
  9. Furstner, A.; Wuchrer, M. Chem. Eur. J. 2006, 12, 76.
  10. Kan, T.; Hosokawa, S.; Nara, S.; Oikawa, M.; Ito, S.; Matsuda, F.; Shirahama, H. J. Org. Chem. 1994, 59, 5532. doi:10.1021/jo00098a009
  11. Kawamata, T.; Nagatomo, M.; Inoue, M. J. Am. Chem. Soc. 2017, 139, 1814. DOI: 10.1021/jacs.6b13263
  12. Charlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936. DOI: 10.1021/jo00332a045

関連書籍

関連反応

外部リンク

関連記事

  1. フリーデル・クラフツ アシル化 Friedel-Crafts A…
  2. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction…
  3. ブラム・イッター アジリジン合成 Blum-Ittah Azir…
  4. ワイス反応 Weiss Reaction
  5. ジョンソン・クライゼン転位 Johnson-Claisen Re…
  6. 野依不斉水素化反応 Noyori Asymmetric Hydr…
  7. 分子内ラジカル環化 Intramolecular Radical…
  8. MT-スルホン MT-Sulfone

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ポンコツ博士の海外奮闘録 外伝② 〜J-1 VISA取得編〜
  2. ビニルモノマーの超精密合成法の開発:モノマー配列、分子量、立体構造の多重制御
  3. アライン種の新しい発生法
  4. 単一分子の電界発光の機構を解明
  5. 「非晶質ニッケルナノ粒子」のユニークな触媒特性
  6. テトラメチルアンモニウム (tetramethylammonium)
  7. mRNAワクチン(メッセンジャーRNAワクチン)
  8. ペプチド鎖が精密に編み込まれた球殻状ナノカプセル〜24交点の絡まりトポロジーをもつ[6]カテナン分子の合成〜
  9. 第3の生命鎖、糖鎖の意味を解明する!【ケムステ×Hey!Labo 糖化学ノックインインタビュー③】
  10. 【書評】きちんと単位を書きましょう 国際単位系 (SI) に基づいて

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

第174回―「特殊な性質を持つフルオロカーボンの化学」David Lemal教授

第174回の海外化学者インタビューは、デヴィッド・レマル教授です。ダートマスカレッジ化学科に所属し、…

二核錯体による窒素固定~世界初の触媒作用実現~

Tshozoです。先月このような論文がNature本誌に発表されました。窒素固定と言えばやはり筆…

有機合成化学協会誌2022年8月号:二酸化炭素・アリル銅中間体・遺伝子治療・Phaeosphaeride・(−)-11-O-Debenzoyltashironin・(−)-Bilobalide

有機合成化学協会が発行する有機合成化学協会誌、2022年8月号がオンライン公開されました。筆…

生体分子と疾患のビッグデータから治療標的分子を高精度で予測するAIを開発

第 408 回のスポットライトリサーチは、九州工業大学 情報工学府 博士後期課程…

尿酸 Uric Acid 〜痛風リスクと抗酸化作用のジレンマ〜

皆さん、尿酸値は気にしてますか? ご存知の通り、ビールやお肉に豊富に含まれるプリ…

第173回―「新たな蛍光色素が実現する生細胞イメージングと治療法」Marina Kuimova准教授

第173回の海外化学者インタビューは、マリナ・クイモヴァ准教授です。インペリアル・カレッジ・ロンドン…

Biotage Selekt のバリュープライス版 Enkel を試してみた

Biotage の新型自動フラッシュクロマトシステム Selekt のバリュープライ…

【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チタン、ジルコニウムが使用されている世界は?-オルガチックスの用途例紹介-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

超分子ランダム共重合を利用して、二つの”かたち”が調和されたような超分子コポリマーを造り、さらに光反応を利用して別々の”かたち”に分ける

第407回のスポットライトリサーチは、千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コー…

セレンディピティ:思いがけない発見・発明のドラマ

hodaです。今回は1993年に刊行され、2022年7月に文庫化された書籍について書いていき…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP