[スポンサーリンク]

odos 有機反応データベース

四酸化ルテニウム Ruthenium Tetroxide (RuO4)

[スポンサーリンク]

概要

超強力な酸化剤として働く。通常の酸化条件では達成不可能なベンゼン環やオレフィンの酸化的開裂が穏和な条件で行える。

しかしながら強力さゆえの副反応もしばしば起こり、基質を選ぶことも少なくない。使用タイミングをよく吟味する必要がある。

ルテニウムは高価であるため、触媒量の前駆体と安価な再酸化剤を用いてRu(VIII)を系中発生させて用いるのが定法である。

基本文献

  • Djerassi, C.; Engle, R. R. J. Am. Chem. Soc. 1953, 75, 3838. DOI: 10.1021/ja01111a507
  • Berkowitz, L. M.; Rylander, P. N. J. Am. Chem. Soc. 1958, 80, 6682. DOI: 10.1021/ja01557a053
  • Wolfe, S.; Hasan, S. K.; Campbell, J. R. Chem. Commun. 1970, 142.
  • Charlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936. DOI: 10.1021/jo00332a045
<review>
  • 実験化学講座第5版 「有機化合物の合成V 酸化反応」 3・2
  • Piccialli, V. Molecules 2014, 19, 6534. doi:10.3390/molecules19056534

開発の経緯

1953年にDjerassiおよびEngleらによって、有機化合物の当量酸化剤としての用途が示された。その後、1981年にSharplessらによって触媒量のルテニウムを用いる標準条件(反応機構項を参照)が確立されるに至り、広く用いられるようになった。

反応機構

溶媒は試薬と反応しない四塩化炭素が通常用いられる。エーテル溶媒などとは激しく反応するため用いることが出来ない。カルボン酸などの基質/生成物が配位すると、触媒が失活する場合がある。配位性共溶媒としてアセトニトリルを加えるとこれが防げる。

このような理由から、RuCl3(cat.)-NaIO4/CH3CN-CCl4-H2Oが標準条件となっている。

本標準条件は二相系であり、系中生成する活性種RuO4が有機溶媒中の酸化によって消費され、水溶性のRuO2になる。これが水溶性の再酸化剤によって酸化され、RuO4が再生する。相間移動触媒を添加すると反応が促進される。

反応例

オレフィンの酸化的開裂

反応機構項の表に示すように、RuO4はオレフィンを開裂してカルボン酸やケトンを与える。典型的な活用法の一つである。この特性から、オゾン酸化の代替法として考えることができる。条件を上手く選ぶことで、開裂をアルデヒド酸化度で止めることも出来る[1]。

オレフィンのcis-ジヒドロキシル化

毒性の強いOsO4を用いずに反応が行える点、極めて短時間で進行する点が特長。初期の触媒条件[2]にブレンステッド酸やルイス酸の添加[3]することで、適用が大幅に改善された。

ポリエンの酸化的環化反応

適切な位置に他のオレフィンが存在すると、酸化的な環化反応が起こりテトラヒドロフラン、テトラヒドロピラン構造を与える。

Molecules 2014, 19, 6534.より引用)

カスケード反応様式に付すことで、多環式化合物を得ることも出来る[4]。


エーテルα位・アミンα位・ベンジル位C-H結合の酸化

メチレン炭素をα位に持つエーテルはRuO4で酸化され、エステルまたはラクトンを与える[5]。環状第三級アミンやアミドの場合も同様の条件で窒素隣接メチレンが酸化され、ラクタムまたはイミドを与える。メチン炭素を持つものは、開裂してケトンへと変換される。このような反応が進行するため、ジオキサンやTHFなどのエーテル系溶媒は本試薬に用いることが出来ない。


また、MOMエーテルベンジルエーテルは比較的丈夫な保護基であるが、RuO4で酸化することで、メチルカーボネートやベンゾイルエステルに変換できる[6]。こうすることで穏和な塩基性条件で除去可能となる。

アルカンのC-H酸化

RuO4でこの種の反応が進行することは知られていたが、近年のC-H変換化学の加熱により、再検討されるに至っている。KBrO3がこの目的の再酸化剤として優れることがDu Boisらによって示されている[7]。C-H結合の反応性は3級>2級>1級の順列に従う。


ベンゼン環の酸化的開裂

電子豊富ベンゼン環はRuO4で開裂し、カルボン酸を与える[8]。この目線に従えば、ベンゼン環をカルボン酸の等価体と捉えることができる。ただし、他の酸化されやすい官能基(オレフィン、アルコールなど)が共存する場合には、そちらの方が優先的に酸化されてしまう。

全合成への適用例

hikizimycinの合成[9]


(+)-Grayanotoxin IIIの全合成[10]


ザラゴジン酸Cの全合成[11]:内部アルキンはα-ジケトンに酸化される。

実験手順

5-デセンの酸化的開裂[12]


フラスコにマグネチックスターラー、四塩化炭素(2mL)-アセトニトリル(2mL)-水(3mL)を入れ、(E)-5-デセン(189μL、1 mmol)および過ヨウ素酸ナトリウム(877mg、4.1 eq)を加える。この二相性溶液に三塩化ルテニウム水和物(5mg、2.2mol%)を加え、 室温で2時間激しく撹拌する。その後、ジクロロメタン(10mL)を加え、有機相を分離する。 これをエーテル(20mL)で希釈し、セライト濾過した後に濃縮する。粗生成物をbulb-tobulb蒸留により精製し、ペンタン酸(180mg、88%)を得た。 反応は20 mmolスケールにまで問題なく増量可能である。

実験のコツ・テクニック

※ルテニウム残渣はショートパッドシリカゲルカラムで簡便に除ける。
※温度制御(室温~40℃)が重要。

参考文献

  1. Yang, D.; Zhang, C. J. Org. Chem. 2001, 66, 4814. DOI: 10.1021/jo010122p
  2. (a) Shing, T. K. M.; Tai, V. W.-F.; Tam, E. K. W. Angew. Chem. Int. Ed. 1994, 33, 2312. (b) Shing, T. K. M.; Tam, E. K. W.; Tai, V. W. -F.; Chung, I. H. F.; Jiang, Q. Chem. Eur. J. 1996, 2, 50. (c) Shing, T. K. M.; Tam, E. K. W. Tetrahedron Lett. 1999, 40, 2179. doi:10.1016/S0040-4039(99)00128-8
  3. (a) Plietker, B.; Niggemann, M. Org. Lett. 2003, 5, 3353. DOI: 10.1021/ol035335a (b) Plietker, B.; Niggemann, M.; Pollrich, A. Org. Biomol. Chem. 2004, 2, 1116. DOI: 10.1039/b316546a (c) Plietker. B.; Niggemann, M. J. Org. Chem. 2005, 70, 2402. DOI: 10.1021/jo048020x
  4. Bifulco, G.; Caserta, T.; Gomez-Paloma, G.; Piccialli, V. Tetrahedron Lett. 2002, 43, 9265. doi:10.1016/S0040-4039(02)02304-3
  5. (a) Lee, D.G.; van den Hengh, M. Can. J. Chem. 1972, 50, 3129. doi: 10.1139/v72-501 (b) Smith, A. B.; Scarborough, R. M., Jr. Synth. Commun. 1980, 10, 205. doi: 10.1080/00397918008064223
  6. Schuda, P. F.; Cichowicz, M. B.; Heimann, M. R. Tetrahedron Lett. 1983, 24, 3829. doi:10.1016/S0040-4039(00)94286-2
  7. McNeill, E.; Du Bois, J. J. Am. Chem. Soc. 2010, 132, 10202. DOI: 10.1021/ja1046999
  8. Teresa Nunez, M.; Martin, V. S. J. Org. Chem. 1990, 55, 1928. DOI: 10.1021/jo00293a044
  9. Furstner, A.; Wuchrer, M. Chem. Eur. J. 2006, 12, 76.
  10. Kan, T.; Hosokawa, S.; Nara, S.; Oikawa, M.; Ito, S.; Matsuda, F.; Shirahama, H. J. Org. Chem. 1994, 59, 5532. doi:10.1021/jo00098a009
  11. Kawamata, T.; Nagatomo, M.; Inoue, M. J. Am. Chem. Soc. 2017, 139, 1814. DOI: 10.1021/jacs.6b13263
  12. Charlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936. DOI: 10.1021/jo00332a045

関連書籍

関連反応

外部リンク

関連記事

  1. リード反応 Reed Reaction
  2. マルコ・ラム脱酸素化 Marko-Lam Deoxygenati…
  3. ガスマン インドール合成 Gassman Indole Synt…
  4. デーブナー・フォン=ミラー キノリン合成 Doebner-von…
  5. ウィルゲロット反応 Willgerodt Reaction
  6. マイヤース・斉藤環化 Myers-Saito Cyclizati…
  7. マーティンスルフラン Martin’s Sulfur…
  8. ロッセン転位 Lossen Rearrangement

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 酸素と水分をW保証!最高クラスの溶媒:脱酸素脱水溶媒
  2. 三井化学岩国大竹工場の設備が未来技術遺産に登録
  3. 「不斉化学」の研究でイタリア化学会主催の国際賞を受賞-東理大硤合教授-
  4. 有機反応を俯瞰する ーエノラートの発生と反応
  5. 軽くて強いだけじゃないナノマテリアル —セルロースナノファイバーの真価
  6. 重水素標識反応 Deuterium Labeling Reaction
  7. ハウザー・クラウス環形成反応 Hauser-Kraus Annulation
  8. 「マイクロリアクター」装置化に成功
  9. 怒涛の編集長 壁村耐三 ~論文と漫画の共通項~
  10. 小さなケイ素酸化物を得る方法

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

Chem-Station Twitter

PAGE TOP