[スポンサーリンク]

odos 有機反応データベース

トリメチレンメタン付加環化 Trimethylenemethane(TMM) Cycloaddition

 

概要

トリメチレンメタン(TMM)は不飽和結合と[3+2]付加環化を進行させる。他の方法では収束的に得ることの難しい、炭素5員環を構築可能な手法。

以下のような共鳴構造を有するため、1,3-双極子の一種と見ることもできる。

TMM_2.gif

短寿命の高反応性化学種であり、多くの場合メチレンシクロプロパンへとすみやかに環化する。合成化学へ応用するには、分子内不飽和結合によりTMMが速やかに捕捉される基質設計、もしくはTMM種自体に安定化を施してやる必要がある。

基本文献

  • Baseman, R. J.; Pratt, D. W.; Chow, M.; Dowd, P. J. Am. Chem. Soc. 1976, 98, 5726. DOI: 10.1021/ja00434a068
  • Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1979, 101, 6429. doi:10.1021/ja00515a046
  • Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1989, 111, 7285. DOI: 10.1021/ja00200a072
  •  Nakamura, E.; Yamago, S.; Ejiri, S.; Dorigo, A. E.; Morokuma, K. J. Am. Chem. Soc. 1991, 113, 3183. DOI: 10.1021/ja00008a063

<review>

 

反応機構

安定化されたトリメチレンメタンの生成法としては大別して以下の3通りがある。

①ビシクロジアゼンを前駆体とする方法:閉環体であるメチレンシクロプロパンが大きく歪んでいるため、TMMへの開環反応が起こりやすくなっている。

TMM_3.gif

②メチレンシクロプロパンケタールを前駆体とする方法:オキソニウムカチオン様式にて、双性イオン構造が安定化される。

TMM_4.gif

③シリルアリルアセテートを前駆体とするパラジウム触媒法:パラジウムπーアリル構造を有する双性イオン型として安定化される。ニッケル(0)も同様の安定化効果を持つ。

TMM_5.gif

反応例

ピンナ酸の不斉合成[1]

TMM_6.gif

Hirsteneの合成[2]

TMM_7.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Xu, S.; Arimoto, H.; Uemura, D. Angew. Chem. Int. Ed. 2007, 46, 5746. DOI:10.1002/anie.200701581
[2] Little, R. D.; Muller, G. W. J. Am. Chem. Soc. 1981, 103, 2744. DOI: 10.1021/ja00400a043

 

関連反応

 

関連書籍

 

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ポロノフスキー開裂 Polonovski Fragmentati…
  2. マラプラード グリコール酸化開裂 Malaprade Glyco…
  3. ウルマンカップリング Ullmann Coupling
  4. エルマンイミン Ellman’s Imine
  5. ネイティブ・ケミカル・リゲーション Native Chemica…
  6. 金属水素化物による還元 Reduction with Metal…
  7. ボロン酸MIDAエステル MIDA boronate
  8. ライマー・チーマン反応 Reimer-Tiemann React…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. IBX酸化 IBX Oxidation
  2. カラッシュ・ソスノフスキ-酸化 Kharasch-Sosnovsky Oxidation
  3. リヒャルト・エルンスト Richard R. Ernst
  4. ノーベル賞の合理的予測はなぜ難しくなったのか?
  5. 理系の海外大学院・研究留学記
  6. 水素水業界、国民生活センターと全面対決 「断じて納得できません」
  7. 『ほるもん-植物ホルモン擬人化まとめ-』管理人にインタビュー!
  8. 構造式の効果
  9. 実験室の笑える?笑えない!事故実例集
  10. デイヴィッド・リウ David R. Liu

注目記事

関連商品

注目情報

試薬検索:東京化成工業



注目情報

最新記事

芳香族ニトロ化合物のクロスカップリング反応

第116回のスポットライトリサーチは、京都大学大学院工学研究科 材料化学専攻 有機材料化学講座(中尾…

バイエルスドルフという会社 ~NIVEA、8×4の生みの親~

Tshozoです。女装とかそういう趣味は無いのですが嫁さん(実在)に付き合って化粧品コーナを回ること…

化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始

2017年8月14日、米国化学会(ACS)は、化学分野のプレプリントサーバー“ChemRxiv”のベ…

光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発

第115回のスポットライトリサーチは、東京工業大学 理学院 化学系 博士後期課程2年の栗木 亮さんに…

誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)

概要悪い例とよい例を比較しながら,実験ノートを具体的にどう書けばよいのかを懇切丁寧に説明する…

神経変性疾患関連凝集タンパク質分解誘導剤の開発

第114回のスポットライトリサーチは、東京大学大学院薬学系研究科博士後期課程2年の山下 博子(やまし…

Chem-Station Twitter

PAGE TOP