[スポンサーリンク]

化学者のつぶやき

アミドをエステルに変化させる触媒

アミドはタンパク質のアミノ酸をつなぐ重要な結合様式であり、天然物や医薬品においてもよくみられる官能基です。アミノ基上の窒素原子の非共有電子対がカルボニル基と共役することで、アミドの炭素–窒素結合は二重結合性を獲得し、求核剤に対して高い安定性を示すことが知られています(図 1a)。そのため、アミドの炭素–窒素結合の切断は困難です。

生物は細胞機能の制御やタンパク質の分解のため特定のアミド結合(ペプチド結合)の切断を行いますが、この切断は、生体内のプロテアーゼを触媒とし、温和な条件(体温、ほぼ中性)で進行します。一方、合成化学においては、一般的に強酸や強塩基、高温などの激しい反応条件を必要とするのが常識です(図 1b)。

2015-10-16_02-59-11

図1 アミドの反応性

 

安定なアミド結合をどーにかして変換するためには、あるトリックを使えば可能となります。具体的な例は示しませんが、アミドを強制的にねじって共役をきってみたり、アミドのカルボニルをより活性化するために、金属がうまく配位できるような置換基を窒素上に導入してみたり。そのようなトリックを使わなければ、やっぱりアミドは安定です。大事なことなのでもう一度いいますが常識です

最近その常識を覆すような反応が最近報告されました。米国カリフォルニア州立大学のHoukGargらは強酸、強塩基をもちいない温和な条件でのアミドのエステル化反応を開発したのです。

 

“Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds”

Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K.;Nature2015, 524, 79.

DOI: 10.1038/nature14615

 

ではどのようにアミド結合を切断(活性化)したのでしょうか?みていきましょう。

 

アミド結合を活性化する

著者らは、アミドの炭素–窒素結合(C–N結合)を遷移金属触媒で活性化することで、エステル化反応を進行させようと考えました。すなわち、C–N結合が遷移金属触媒に酸化的付加した活性種2に対して、求核剤を作用させることでカルボニル基に求核剤が付加した化合物3とアミン4が得られると想定しました(図 2a)。

検討の結果、遷移金属触媒にフェノール誘導体[1]やアニリン誘導体[2]などの強固な炭素–ヘテロ原子結合の活性化が可能であるニッケル触媒を、求核剤はアルコールを用いることでアミドからエステルへの変換反応を可能としたのです(図 2b)。

 

2015-10-16_03-09-36

図2 アミド結合の遷移金属触媒による活性化

 

基質適用範囲

本反応は芳香族アミドに限られますが、芳香族上の置換基は電子求引基、供与基に関わらず適用可能であり、ヘテロ芳香族アミドに対しても反応は問題なく進行します。窒素上の置換基は、アルキル基のみでは反応は起こらず、フェニル基や電子求引性の置換基がある場合に反応は進行します(図 3a)。求核剤は、嵩高いアルコールや糖のような複雑なアルコールも適用できます(図 3b)。アミドとエステルが共存し、不斉点をもつ化合物もアミドが選択的にエステル化され、脱離したアミノ酸誘導体のエナンチオ過剰率も保持されるようです (図 3c)。

2015-10-16_03-10-19

図3 ニッケル触媒を用いたアミドのエステル化反応

 

反応機構について

推定反応機構を図4に示します。初めに触媒1のNHC配位子が一つ解離し、芳香族アミドの芳香環が1に配位することで中間体2を形成します。続いて、ニッケルにC–N結合の酸化的付加が起こり、3を経て配位子交換により中間体4となります。ニッケルの還元的脱離により中間体5を形成した後に、生成物の解離とともに触媒1が再生することで触媒サイクルは完結します 。

 

2015-10-16_03-10-53

図4 触媒サイクル

 

また、本反応機構において、1) 律速段階は酸化的付加であること 2) 反応全体の自由エネルギー変化は負となり、反応の進行を熱力学的に支持することをDFT計算により明らかとしています。

 

まとめ

今回著者らは、遷移金属触媒によるアミドの直接的なC–N結合の活性化にはじめて成功しました[3]。本反応により、アミドは変換しうる官能基としてみなすことができ、合成戦略の幅が拡がります。今回はアミドのエステル化の報告ですが、例えば、用いる求核剤を変えたり、脱カルボニル化反応[4]により、アミドを様々な官能基に変換できる可能性があります。結合活性化研究の未来とそれを実現させる優れた配位子および触媒の登場が楽しみですね。

 

参考文献

  1. Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Rev. 2011, 111, 1346. DOI: 10.1021/cr100259t
  2. Tobisu, M.; Nakamura, K.; Chatani, N. Am. Chem. Soc. 2014, 136, 5587. DOI: 10.1021/ja501649a
  3. Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Rev. 2015. ASAP. DOI: 10.1021/acs.chemrev.5b00386
  4. Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. Am. Chem. Soc. 2012, 134, 13573. DOI: 10.1021/ja306062c

 

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. シュプリンガー・ネイチャーが3つの特設ページを公開中!
  2. ナイトレン
  3. sp2-カルボカチオンを用いた炭化水素アリール化
  4. 2010年ノーベル化学賞予想―海外版
  5. シュガーとアルカロイドの全合成研究
  6. SPring-8って何?(初級編)
  7. π⊥ back bonding; 逆供与でπ結合が強くなる?!
  8. アントンパール 「Monowave300」: マイクロ波有機合成…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. アルカロイド / alkaloid
  2. スーパーブレンステッド酸
  3. 有機反応機構の書き方
  4. 第37回反応と合成の進歩シンポジウムに参加してきました。
  5. カチオン重合 Cationic Polymerization
  6. 第31回「植物生物活性天然物のケミカルバイオロジー」 上田 実 教授
  7. ロバート・グラブス Robert H. Grubbs
  8. SDFって何?~化合物の表記法~
  9. TriBOT ~1分子が3倍活躍するベンジル化試薬~
  10. 香りの化学1

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

分子振動と協奏する超高速励起子分裂現象の解明

第98回のスポットライトリサーチは、コロンビア大学の宮田潔志さん(日本学術振興会海外特別研究員)にお…

二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界

内容2004年にブレークしたグラフェンは,電子材料はじめさまざまな応用が期待される新素材の担…

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

Chem-Station Twitter

PAGE TOP