[スポンサーリンク]

B

ボーディペプチド合成 Bode Peptide Synthesis

 

概要

α-ケト酸とヒドロキシルアミンを混合するだけでペプチド(アミド)結合が合成できる。

穏和な条件で進行し、官能基選択性も高い。非常に簡便で、廃棄物も除去容易で無害な二酸化炭素と水のみ、というクリーンな反応である。

無保護のアミンやカルボン酸が共存していても選択的に反応が進行することが特徴である。ペプチド合成においてしばしば問題になるα-エピ化もかなり起こりにくい。

基本文献

・Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem. Int. Ed. 2006, 45, 1248. doi:10.1002/anie.200503991

<review>
・ Harmand, T. J. R.; Murar, C. E.; Bode, J. W. Curr. Opin. Chem. Biol. 2014, 22, 115. DOI: 10.1016/j.cbpa.2014.09.032

開発の歴史

2006年にカリフォルニア大学サンタバーバラ校のJeffery Bode(現在:スイス工科大学)によって報告された。 α-Ketoacid-Hydroxylamine (KAHA) Ligationとも呼ばれる。

Jeffrey W. Bode

Jeffrey W. Bode

 

反応機構

18O標識による結果から以下の様に推定されている。(参考:Angew. Chem. Int. Ed. 2012, 51, 513.)

bode_peptide_3

反応例

無保護のアミン・カルボン酸存在下でのペプチド合成例
topic_peptide_4.gif
キラルなオキサゾリジン誘導体を用いる連続的β-ペプチド合成
bode_peptide_5.gif

ペプチドケト酸の調製法[2]:シアノチオイリドを酸化することで、アミノ酸単位から簡便に調製できる。固相担持で合成することも可能[3]。

KAHA_ligation_7

ペプチドヒドロキシルアミンの調製法[4]: 酸化体をニトロンとして捕捉することで過剰酸化を防げる設計の酸化剤を用いることで、直接合成が行える。

KAHA_ligation_8

実験手順

N-[(1S)-1-Phenylethyl]-benzeneacetamideの合成[1] bode_peptide_6.gif

窒素雰囲気下、撹拌子を備えた500mL丸底フラスコにフェニルピルビン酸(4.75g, 28.9mmol, 1.0 eq)のN,N-ジメチルホルムアミド(289mL)溶液を調製する。5分撹拌後、室温にてN-hydroxy-(S)-1-phenylethylamine oxalate (9.20 g, 40.5 mmol, 1.4 eq)を固体のまま、一度に加える。反応溶液を40℃に昇温して、完結するまで撹拌する。
溶液をエバポーレータ(50℃、10mmHg)にて約20mLにまで濃縮後、黄みがかった溶液を、30分かけて室温にまで放冷する。その後ジエチルエーテル(200mL)で希釈し、1N塩酸水溶液(200mL)を入れておいた分液漏斗に注ぐ。有機層を分取し、1N塩酸(200mL)で再び洗浄する。水層を合わせ、ジエチルエーテル(3×200mL)で抽出する。有機層を合わせ、飽和重曹水(200mL)で洗浄する。またこの水層からエーテル(2×200mL)で逆抽出する。有機層を合わせ、飽和食塩(400mL)で洗浄し、無水硫酸ナトリウムで乾燥する。ろ過後、有機層をエバポーレータ(40℃、20mmHg)で濃縮し、真空ポンプ(2mmHg)で一晩乾燥すると、黄色の粘稠性油状物質として粗生成物が得られる。
これをカラムクロマトグラフィ(SiO2, 280 g)にマウントし、30% 酢酸エチル/ヘキサンを展開溶媒として精製することで、目的物を白色固体として得る (5.92-5.96 g, 収率85-86%)。

実験のコツ・テクニック

 

参考文献

[1] Carrillo, N..; Davalos, E. A.; Russak, J. A.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 1452. DOI: 10.1021/ja057706j
[2] Lu, J.; Lipert, A. R.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 4253. DOI: 10.1021/ja800053t
[3] Lu, J.; Bode, J. W. Org. Biomol. Chem. 20097, 2259. DOI: 10.1039/B901198F
[4] Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2009131, 3864. doi:10.1021/ja900601c
[5] Ju, L.; Bode, J. W. Org. Synth. 201087, 218. DOI: 10.15227/orgsyn.087.0218

関連反応

 

関連書籍

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. デス・マーチン酸化 Dess-Martin Oxidation
  2. フィッツィンガー キノリン合成 Pfitzinger Quino…
  3. ティシチェンコ反応 Tishchenko Reaction
  4. MAC試薬 MAC Reagent
  5. ライマー・チーマン反応 Reimer-Tiemann React…
  6. アラン・ロビンソン フラボン合成 Allan-Robinson …
  7. 野依不斉水素移動反応 Noyori Asymmetric Tra…
  8. ワイス反応 Weiss Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 動画:知られざる元素の驚きの性質
  2. 大型リチウムイオン電池の基礎知識【終了】
  3. 細菌ゲノム、完全合成 米チーム「人工生命」に前進
  4. 酢酸ビニル (vinyl acetate)
  5. ザック・ボール Zachary T. Ball
  6. 改正 研究開発力強化法
  7. 武田薬品、週1回投与の骨粗鬆症治療薬「ベネット錠17.5mg」を発売
  8. 熊田 誠 Makoto Kumada
  9. ブラム・イッター アジリジン合成 Blum-Ittah Aziridine Synthesis
  10. 表裏二面性をもつ「ヤヌス型分子」の合成

関連商品

注目情報

注目情報

最新記事

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

Chem-Station Twitter

PAGE TOP