[スポンサーリンク]

化学者のつぶやき

ゲルマニウムビニリデン

分子の末端に” =C: ” 部位を持つ化合物として、イソニトリル(RN=C:)があります。この窒素の代わりに炭素が結合した場合に得られるアセチレンの異性体(R2C=C:)のことを、ビニリデンと言います。

高周期が変?炭素が特別?

炭素は価電子を4つ持つため、一酸化炭素(CO)やイソニトリル、カルベン(R2C:)等の例を除くと、通常、σ、π 結合あわせて四つの結合を形成します。ところがsp3、sp2、spと様々な混成を容易に形成できる炭素と異なり、高周期元素では置換基の配位数を固定すると、よりs性の低い[sp3 (25%), sp2 (33.3%), sp (50%)] 電子状態を好む傾向があります。そのため、例えばsp混成炭素を持ち直線構造を示すアセチレン(HC≡CH)とは対照的に、その高周期類縁体は、折れ曲がった構造の方がより安定であると推測されており[1]、これまでに単離されたゲルマニウムのアセチレン類縁体は、以下に示すようなトランスベント構造であることが報告されています[2]。
fig-1(それぞれ文献2より引用)

また、母体(HGeGeH)における理論計算によると、トランスベント構造 B以外の異性体 C, D, Eも、直線構造 Aより安定であることが予想されています。

fig-2

(E = Ge、原著論文より引用)

で、ちょっと待ってくださいよ、と。よくよく数字を見比べてみると、二つの水素が架橋した Dのほうが一番安定だし、CとかEに関してもBより安定じゃん、なんで B的なやつしか報告されていないの?と、思うわけです。
そこで、もう一度上に示した単離例をみてみると解る通り、置換基がでかいことに気が付くと思います。そう、置換基間の立体反発による不安定化が要因となって、置換基どうしが一番はなれた、分子内立体反発の低い Bが得られる、というわけです。

アセチレン類縁体を得たいがために、速度論的安定化効果を持つでかい置換基を用いた結果、その置換基間立体反発によって本来より安定であるはずの構造にたどり着けない、というなんとも言えない状態に至ってるんですね。いや、トランスベントはそれで素敵ですけどね。

異性体間の安定性を変えるには

なるほど、現状は分析&把握できましたね。ここからが大事。
では、どうすれば B以外の異性体を単離できるでしょうか?(と、現場の化学者はすぐに想像しちゃう癖を持ちましょー)

.二座型の置換基を開発する (→いけるかもしれないけどギャンブルね

.逆に Bの状態でも立体反発が出るくらいバカでかい置換基をつかって、B-Eにおける立体反発差を誤差にする (→ その置換基が思いつかないわ・・

.フラーレンに閉じ込める (→ M田Y次郎先生お願いします)[3]

 思いつかなくて、考えるのやめる ( →カーズ?!)[4]

.立体反発による不安定化を超える安定化効果を持つ置換基を使う(← いまここ

ゲルマニウムビニリデンを得る方法

今回、Oxford大のSimon Aldrigeらのグループ[5]によって、トランスベント構造以外の異性体が単離されたので報告したいと思います。その名も、ビニリデン。

Arnab Rit, Jesus Campos, Haoyu Niu and Simon Aldridge, Nat. Chem. 2016, doi:10.1038/nchem.2597

著者らは、ボリル基とClを置換基とするゲルミレンのカルベン付加体を出発原料とし、Mg錯体、もしくはカリウム類で還元反応を行いました。Mg錯体を用いた還元反応からは、カルベンが配位したジゲルミンが得られています。をさらにKC8で還元すると、ジアニオン種が生成しています。還元によってカルベンをGe上から取り除けるのは興味深い反応ですね。二つのカリウムが置換基中の芳香環間に配位していることが、カルベン放出の要因でしょう。は、とカリウム/KC8との直接反応からも得ることができ、形式的に酸化数0のゲルマニウムを含む化学種です。

fig-3

さて、を単離した(カルベンを系からのぞいた)後に、もう一度酸化するとどうなるのでしょう?もうカルベンが無いので、に”I will be back”できません。

実際に著者らが[Cp2Fe][BArf4]もしくは[Ph3C][B(C6F5)4]を用いてを酸化したところ・・・

fig-4

ビニリデデンデンデデン!4を黄褐色結晶として得ることに成功しました。

固体状態の分子構造はX線構造解析によって決定しており、二つのボリル基が同一ゲルマニウム上に置換していることを確認しています。
fig-5

(左),(右)の分子構造(原著論文より引用)

では、どうしてより立体反発が低いであろうトランスベント構造ではなく、ビニリデン構造が得られたのでしょうか。鍵となっている要因は、ボリル基内の芳香環部位にあります。
まず、ボリル基同士の立体反発でB-Ge-B 結合角が142.1(6)°と、通常の三配位 sp2混成(120°)と比べ、大きく広がっていることがわかります。その結果、各ボリル基内の一つの芳香環が、Ge=Ge 部位に並行になるように近づいています。イソニトリルの炭素のように、末端のGe(2)上では、Ge=Ge π-結合と直交するかたちで空のp軌道が広がっています。上述の近接した芳香環(π電子)が、Ge(2)の空軌道を上下から挟むようにπ(Ar)-p(Ge) 相互作用することで分子を安定化していたのですね。
この相互作用の存在は理論計算によってHOMO-11に確認することができ、また溶液中においてもビニリデン構造を保持していることが、温度可変1H NMRで立証されています。

fig-6

のHOMO-11(原著論文SIより)

おそらく、トランスベント構造では分子内の立体反発はより低いのかもしれませんが、置換基の分子内配位による安定化が得られないので、総合にエネルギーを差し引きした結果としてビニリデンが最安定構造になるのだと思います。計算では、トランスベント構造よりもビニリデン構造のほうが10 kJmol-1ほど、安定だと見積もられています。

最後に

じゃあAr基が末端Ge(2)に近づけるような置換基だったらなんでもいいのかというと、そうではありません。図1のターフェニル基(by Power)にも同様のAr基がありますが、トランスベント構造してますよね。おそらく、六員環を基本骨格とするターフェニル基の場合、同一Ge上に置換すると
(1)置換基間の立体反発が大きすぎる
(2)Ar基が末端Ge中心に近づきすぎてπ(Ar)-p(Ge) 安定化どころじゃない
と想像できます。

5員環を成し得るボリル基ならではの成果だと考察できます。また、論文中では、σ供与性が強く、低原子価の典型元素に置換した場合HOMOの準位と反応性を高めるボリル基、としか言及されていませんが、そのσ供与性の高さは、置換したGe(1)原子の非混成状態からs性の高い混成の形成及び電子昇位エネルギーの減少に貢献していると考えられます。ボリル基の立体構造・電子効果双方がターゲット分子安定化にがっつりハマった成果と言えるのではないでしょうか。

近年、ボリル基を持つ様々な典型元素低配位化学種が単離されていますが、その本質的な置換基効果に目を向けることで、この分野のさらなる発展が期待できそうです。

参考文献

[1] (a)S. Nagase, K. Kobayashi, N. Takagi, J. Organomet. Chem. 2000, 611, 264. doi.org/10.1016/S0022-328X(00)00489-7
(b) M. Lein, A. Krapp, G. Frenking, G. J. Am. Chem. Soc. 2005, 127, 6290. DOI: 10.1021/ja042295c
[2] Selected examples (a) M. Stender, A. D. Phillips, R. J. Wright, P. P. Power, Angew. Chem. Int. Ed. 2002, 41, 1785. DOI: 10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6
(b) Y. Sugiyama, T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh, J. Am. Chem. Soc. 2006, 128, 1023. DOI: 10.1021/ja057205y
(c) J. Li, C. Schenk, C. Goedecke, G. Frenking, C. Jones, J. Am. Chem. Soc. 2011, 133, 18622. DOI: 10.1021/ja209215a
(d) T. J. Hadlington, M. Hermann, J. Li, G. Frenking, C. Jones, Angew. Chem. Int. Ed. 2013, 52, 10199. DOI: 10.1002/anie.201305689
[3] 村田研究室
[4] カーズ
[5] Aldridge lab

 

関連書籍

関連リンク

 

関連記事

  1. 不活性アルケンの分子間[2+2]環化付加反応
  2. 磁性流体アートの世界
  3. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  4. シリリウムカルボラン触媒を用いる脱フッ素水素化
  5. 有機アジド(4)ー芳香族アジド化合物の合成
  6. 印象に残った天然物合成1
  7. 私がケムステスタッフになったワケ(2)
  8. PL法 ? ものづくりの担い手として知っておきたい法律

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑫:「コクヨのペーパーナイフ」の巻
  2. 文具に凝るといふことを化学者もしてみむとてするなり : ② 「ポスト・イット アドバンス」
  3. 2011年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  4. DOIって何?
  5. 「人工タンパク質ケージを操る」スイス連邦工科大学チューリヒ校・Hilvert研より
  6. 【書籍】化学探偵Mr.キュリー5
  7. 新たな特殊ペプチド合成を切り拓く「コドンボックスの人工分割」
  8. イトムカ鉱山
  9. 難溶性多糖の成形性を改善!新たな多糖材料の開発に期待!
  10. 日本コンピュータ化学会2005秋季年会

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界

内容2004年にブレークしたグラフェンは,電子材料はじめさまざまな応用が期待される新素材の担…

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

Chem-Station Twitter

PAGE TOP