[スポンサーリンク]

一般的な話題

第3のエネルギー伝達手段(MTT)により化学プラントのデザインを革新する

[スポンサーリンク]

 

マイクロ波が生産プロセスにもたらす可能性

1970年代につくられた生産プロセスは、革新がないまま老朽化を向かえ、設備更新の時期が迫っている。そのような状況下で、マイクロ波プロセスは、従来の化学プロセスとは全く異なる機構で反応を促進する極めて高効率な化学プロセスとして、次世代の生産プロセスとして期待されている。

マイクロ波とは、波長約1 mm~1 m(300 MHz~300 GHz)の電界と磁界が直交した電磁波であり、通信、乾燥、電子レンジなど工学分野から我々の身の回りの家電製品まで広く利用されている。マイクロ波加熱は、マイクロ波の振動電磁場との相互作用により誘電体、磁性体を構成する双極子、空間電荷、イオン、スピンなどが激しく振動・回転することによって起こる内部加熱であり、短時間で目的温度に達することが可能である。

マイクロ波の化学は、1986年のTetrahedron Lettersに掲載されたR. GedyeR. J. Giguereによる有機反応から始まった[1]。現在に至るまで、マイクロ波化学は、有機合成、錯体合成、ナノ粒子合成、高分子合成等に適用され、急速-選択加熱、内部均一加熱、非平衡局所加熱の特殊加熱モードによる、反応時間短縮、高収率、選択性向上などの効果が報告されてきた。

30年経った現在、国際学術論文発表数は数千報以上にものぼり、ラボスケールにおいては新規ププロセスとして期待され、マイクロ波効果の制御が可能になれば、革新的な新規反応場を用いた魅力的な化学プロセスと認識されている。しかしながら、未だ、化学プロセスとして大型産業化された報告は無い。

img_three_04

 

マイクロ波プロセスを産業展開する場合、乗り越えなければならない障壁がいくつか存在する。

1つめは、最適なマイクロ波反応系の構築。最適な系を設計できない場合は、単なる加熱手段となる可能性が高いからである。

2つめは、マイクロ波リアクターのスケールアップ。電磁波であるマイクロ波の浸透深さ、化学反応下におけるリアクター内の電場解析などの観点から、マイクロ波化学反応装置設計が難しい。

3つめは、マイクロ波プロセスの制御システム構築。

これは、マイクロ波化学プロセスは、新しい概念で実現しているため、通常プロセスの制御とは異なった全く新しい制御方法が必要なためである。これらの障壁を越えて初めて、安全性を確保したプロセスとして産業界にも応用展開可能になると考えられる。

 

マイクロ波反応系構築

単位体積あたりのマイクロ波による熱変換エネルギー(W/m3)は,以下の式で表される。

2016-09-25_15-42-20

それぞれは導電損失,誘電損失,磁性損失と呼ばれ,導電体,誘電体,磁性体がマイクロ波と相互作用した損失を示す。一般的な加熱では,水やアルコールに代表されるように誘電損失を用いるケースが多い。誘電損失は,マイクロ波の電界強度の平方,誘電体の複素誘電率の虚部(誘電損失係数),周波数に比例し,その誘電損失係数は温度依存性,周波数依存性を強く示す。

よって、マイクロ波に適した反応系を構築するためには、反応基質、溶媒、触媒の複素誘電率、複素透磁率の温度依存性、周波数依存性を測定することが重要で、そこではじめて何に、どのような周波数を照射するのが最適かを設計することが可能になる。

反応系構築後のラボ実験においては、フラスコ、攪拌羽根、温度計などの実験器具の材質のマイクロ波吸収能を把握しておくことも重要である。特にマイクロ波吸収能が小さい系の場合は、ガラス容器や熱電対などがマイクロ波を吸収してしまう可能性がある。

 

 

次回は、「マイクロ波装置のスケールアップ」「各アプリケーションへの展開」について言及していく。

 

*本記事は大阪大学特任准教授、マイクロ波化学CSO塚原保徳氏からご寄稿頂きました記事に少し改変を加えた寄稿記事です。ケムステではこのような寄稿記事の募集も行っています。

 

塚原保徳 Yasunori Tsukahara

img_profile_02大阪大学大学院工学研究科特任准教授/マイクロ波化学株式会社 共同創業者 取締役CSO

2003年大阪大学大学院理学研究科博士後期課程修了、2004年大阪大学大学院工学研究科・特任研究員、2006年大阪大学大学院工学研究科特任准教授。専門はマイクロ波化学、無機化学、光化学。2007年マイクロ波化学プロセスの事業化を目的にマイクロ波化学の前身となるマイクロ波環境化学株式会社を設立。現在、国内外の化学メーカーとの共同開発や合弁事業を多数手掛ける。生産効率を上げるだけではなく、物性の向上が実現できるため、次世代製品の材料開発に必要な技術としてさまざまな業界から期待されている。

 

関連文献

  • Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J.Tetrahedron Lett. 1986, 27, 279. DOI: 10.1016/S0040-4039(00)83996-9

関連リンク

 

関連書籍

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. タミフルの新規合成法
  2. 微生物細胞に優しいバイオマス溶媒 –カルボン酸系双性イオン液体の…
  3. 金属を超えるダイヤモンド ーボロンドープダイヤモンドー
  4. 抗生物質の話
  5. 第37回反応と合成の進歩シンポジウムに参加してきました。
  6. 未来の科学者を育てる政策~スーパーサイエンスハイスクール(SSH…
  7. 水分解反応のしくみを観測ー人工光合成触媒開発へ前進ー
  8. 【PR】Twitter、はじめました

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 虫歯とフッ素のお話② ~歯磨き粉のフッ素~
  2. Innovative Drug Synthesis
  3. 構造式から選ぶ花粉症のOTC医薬品
  4. 檜山爲次郎 Tamejiro Hiyama
  5. アスタチンを薬に使う!?
  6. ヤクルト、大腸の抗がん剤「エルブラット」発売
  7. 均一系水素化 Homogeneous Hydrogenaton
  8. 三菱化学の4‐6月期営業利益は前年比+16.1%
  9. 速報・常温常圧反応によるアンモニア合成の実現について
  10. 「富士フイルム和光純薬」として新たにスタート

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP