[スポンサーリンク]

chemglossary

ケミカルジェネティクス chemical genetics

ケミカルジェネティクス、もしくは化学遺伝学とは、化学と遺伝学の強みを生かして生命現象の解明を目指す方法論です。

よくある手法としては、およそ上記のような過程を経ます。

 

(1)化合物スクリーニング 「たくさん試しておもしろい性質のある物質を探す」
まず膨大な化学物質の組み合わせから、特異な生理活性を持つ化合物を見出します。天然化合物を収集したライブラリー、医薬品シード化合物を収集したライブラリー、機械的に合成したライブラリーなどを組み合わせ、可能な限り大量の化合物から選抜します。

 

(2)変異体スクリーニング 「クスリの効かない変異体を探しその原因を診断する」
次に、大腸菌・酵母菌・線虫・シロイヌナズナ・ショウジョウバエといった、遺伝学のできる生物に、化合物を投与します。これらの生物はたいてい、かけあわせが可能で、ゲノムが解読済み、変異遺伝子を同定しやすいモデル生物です。耐性変異体を得て、原因遺伝子を同定。標的タンパク質につらなる作用機構を解明していきます。

 

(3)作用機構解明からの応用展開 「新しい農薬・医薬品の開発に向けて」
標的タンパク質の構造にもとづく生理活性化合物の構造展開や、農薬や医薬品など応用開発を目指します。

 

生命の複雑系に明確な摂動を引き起こす分子を糸口に

 

生命のふるまいを予測することは、その複雑さがもたらすところにより、挑戦的な課題のひとつです。分子どうしの物理的な相互作用にはじまり、モデルとなる生体のシステムの中で生命現象が制御され、性フェロモンでカイコが求愛行動をしたり、あるいはネムノキが就眠運動をしたりといった、明確な摂動がどのように引き起こされるのかを明らかにするためには、膨大な量の情報が要求されます。

 

遺伝子の発現が変動することの重要さは、モデル生物での変異体ライブラリーの拡充により、よく明らかにされてきました。しかし、生存に必須で欠くことのできない遺伝子の変異体はそもそも致死であるためなかなか得られません。また、相同で類似の機能を持つ遺伝子がゲノム中に複数ある場合も、目的の表現型を持つ変異体はなかなか得られません。さらに、こういった遺伝学的マッピングによる原因遺伝子の同定は、モデル生物のようにかけあわせをくりかえし行える生き物でしかできません。

 

小分子の化学物質を使って、これらの欠点を補う手法が、いわゆるケミカルジェネティクスの方法論です。

 

ゲノム中の遺伝子の欠損が生命システムに摂動を起こすならば、その遺伝子産物の機能だけをノックダウンして落とす化合物も、きっとどこかにあるはずだ。この考えが、ケミカルジェネティクスのアプローチの根底にあります。とくに、最近はコンビナトリアルケミストリーの発展にともない、ケミカルライブラリーが拡充され、生命現象の解明や、新規医薬品の開発などの分野で、ケミカルジェネティクスの考え方は活用されています。

 

このような背景で、ケミカルジェネティクスは、注目を集めています。

 

参考文献

[1] “Combination chemical genetics.” Lehar J. Nature Chem. Biol. 2008 Review DOI: 10.1038/nchembio.120

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. メタンハイドレート めたんはいどれーと methane hydr…
  2. ケミカルバイオロジー chemical biology
  3. 動的コンビナトリアル化学 どうてきこんびなとりあるかがく Dyn…
  4. 多成分連結反応 Multicomponent Reaction…
  5. クロスカップリング反応
  6. トップリス ツリー Topliss Tree
  7. クライン・プレログ表記法 Klyne-Prelog Nomenc…
  8. リード指向型合成 / Lead-Oriented Synthes…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 2009年1月人気化学書籍ランキング
  2. 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン:1,5,7-Triazabicyclo[4.4.0]dec-5-ene
  3. 炭素を1つスズに置き換えてみたらどうなる?
  4. 浜地 格 Itaru Hamachi
  5. 城戸 淳二 Junji Kido
  6. p-メトキシベンジル保護基 p-Methoxybenzyl (PMB) Protective Group
  7. 稲垣伸二 Shinji Inagaki
  8. スコット・デンマーク Scott E. Denmark
  9. ヤマハ発動機、サプリメントメーカーなど向けにアスタキサンチンの原料を供給するビジネスを開始
  10. グラフェン技術の最先端 ~量産技術と使いやすさの向上、今後の利用展開~

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

bothの使い方

形容詞もしくは代名詞の働きをする場合(接続詞としての用法もあります)、「both」は日本人学者によっ…

単一分子を検出可能な5色の高光度化学発光タンパク質の開発

第76回のスポットライトリサーチは、大阪大学産業科学研究所永井研究室の鈴木和志さんにお願いしました。…

国連番号(UN番号)

危険な化学品を飛行機や船を使って輸送することは、現代では日常的に行われていることである。安全に化学品…

生きた細胞内でケイ素と炭素がはじめて結合!

生物は豊富にあるケイ素を利用しない。このたび、ケイ素と化学結合を形成して体内の生化学経路に取り込むこ…

H-1B ビザの取得が難しくなる!?

先日、米国の博士研究員の最低賃金変更についてお伝えしました。トランプ政権では、専門職に就くために…

高速エバポレーションシステムを使ってみた:バイオタージ「V-10 Touch」

タイトルから何だそれ?と思った方々。正しいです。高速のエバポ?どういうこと?と思うことでしょう。…

Chem-Station Twitter

PAGE TOP