[スポンサーリンク]

ケムステまとめ

Dead Endを回避せよ!「全合成・極限からの一手」シリーズ

全合成(Total Synthesis) は、ときに山登りに例えられるほど過酷な研究領域です。多くは数年という長い時間を要し、幾人もの共同研究者による血の滲む努力と試行錯誤の末に、その合成は達成されます。

直面した困難を克服するべくものづくりの匠によって編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介しているシリーズです。困難に直面した全合成化学者がいかにして創造的発想からの解決に至ったか、それを追体験できるような記事となっています。

Dead Endを回避せよ!「全合成・極限からの一手」記事一覧

本合成においてはもともと、Aの脱離基Lを有機金属試薬へと交換し、共役系を介したエポキシド開環を駆動力とする分子内三員環形成にてCを合成する計画だった。しかしAtBuLiで処理すると、実際には化合物Bのみが得られることがわかった。
この予備的知見をもとに、試薬Xを二度加える手順が開発され、メシル化体ACの短工程変換が達成された。試薬Xの候補となり得るものを提案せよ。

next_move_2

解答はこちら

 

本合成では中間体Aからピナコール転位により天然物骨格Cを得ようとしたが、望みのbycyclo[9.3.0]骨格ではなく、bicyclo[9.2.1]骨格をもつBが得られてしまった。

Coreyらは中間体Aに適切な変換を施すことで、この転位反応を見事成功に導いている。どのような変換もしくは工夫を行えば、望む骨格Cが得られるだろうか。ピナコール転位の反応機構をもとに提案せよ。

next_move_2q_1.gif

 

解答はこちら

 

  • 問題3:白濱晴久らによる(-)-Grayanotoxin IIIの全合成(1994)から。

本合成の最終段階におけるMOM基の脱保護は困難を極め、酸性条件では完全な脱保護を行うことが不可能だった。
そこで化合物の基本骨格が酸化条件に強いという特性を踏まえ、アセチル保護後、酸を使用しない2工程の化学処理を行った。これにより見事脱保護に成功し、全合成が達成された。

ここで用いられている化学工程としては、どのようなものが考えられるか、提案せよ。

next_move_3q_1

解答はこちら

 

以下に示すアルキンBの形成では、ジヒドロピラン体Cの副生が問題となって、収率の低下を招いていた。各種条件検討では解決が難しいと判断され、基質構造の修正から収率の向上が図られた。最終的に、基質Aに適切な重水素化を施すことよって、収率の劇的な向上が達成された。
以下に鍵反応を含めた合成スキームを示す。副反応の反応機構および重水素試薬の入手性を加味しながら、鍵反応の収率向上が期待できるように、基質Aの重水素化体をデザインせよ。

next_move_4q_1

解答はこちら

 

  • 問題5: Sturmer・Hoffmannによるエリスロノリド類縁体の全合成(1993)から

本合成では酸性条件に弱い複数の保護基が共存する中で、シクロペンチリデンアセタールのみを選択的に脱保護することが求められた。この目的にて、驚くべきことに2,4,6-トリニトロトルエン(TNT)の添加が効果的であることが見出されている。TNTの役割を説明せよ。

next_move_5q_1

解答はこちら

 

 

以下のアリル化反応においては、太赤字の添加剤がない場合には副反応を生じ、収率が低下してしまう。どのような副反応を抑制する目的で選択されているかを推測し、合理的説明を与えよ。

next_move_6q

解答はこちら

 

以下に示すタンデム鍵反応では、上スキームのように5位立体が逆に出てしまうことが問題であった。しかしone-potでチオフェノール付加体に変換するという本来必要のない変換を挟むことで、下スキームのように望む立体を持つ生成物を単離することができ、問題を解決できた。成功に至った理由(チオフェノールの効能)を考察せよ。

next_move_7q.gif

解答はこちら

  • 問題8: J.A.PorcoらによるOximidine IIIの全合成(2004)から

本合成の鍵工程である12員閉環メタセシスは、素直に設計された基質Aを用いると、目的物Cの生成が低収率にとどまってしまった。しかしながら一見余分な置換基(黄色でハイライト)を備えた基質Bを用いると、収率が大幅に向上した。この置換基の効能と、収率向上に寄与した理由を説明せよ。

next_move_8q_2

解答はこちら

 

関連する書籍のレビュー記事

 

関連書籍

The following two tabs change content below.
webmaster

webmaster

Chem-Station代表。早稲田大学理工学術院准教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 理系の海外大学院・研究留学記
  2. 計算化学記事まとめ
  3. 論文執筆ABC
  4. 「文具に凝るといふことを化学者もしてみむとてするなり」シリーズ
  5. 「化学研究ライフハック」シリーズ 2017版まとめ
  6. 日本人化学者による卓越した化学研究
  7. 研究費・奨学金の獲得とプロポーザルについて学ぼう!
  8. 有機合成テクニック集[ケムステ版]

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. Greene’s Protective Groups in Organic Synthesis 5th Edition
  2. アセタール還元によるエーテル合成 Ether Synthesis by Reduction of Acetal
  3. 独メルク、電子工業用薬品事業をBASFに売却
  4. 「先端触媒構造反応リアルタイム計測ビームライン」が竣工
  5. 新たな製品から未承認成分検出 大津の会社製造
  6. イー・タン Yi Tang
  7. 祝!明治日本の産業革命遺産 世界遺産登録
  8. 第20回「転んだ方がベストと思える人生を」ー藤田 誠教授
  9. フラーレンの中には核反応を早くする不思議空間がある
  10. 手術中にガン組織を見分ける標識試薬

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

芳香族カルボン酸をHAT触媒に応用する

ミュンスター大・Gloriusらは、可視光レドックス触媒を用いる位置選択的なC(sp3)-Hチオトリ…

日本薬学会第137年会  付設展示会ケムステキャンペーン

先日閉会した日本化学会年会。付設展示会では毎年恒例の付設展示会ケムステキャンペーンを行いました(Pa…

元素名と中国語

Eineです。化学を学ぶ人間が最初に直面する課題、それは元素周期表の暗記です。高校化学過程では第1元…

「超分子ポリマーを精密につくる」ヴュルツブルク大学・Würthner研より

「ケムステ海外研究記」の第11回目は、第10回目の赤松さんのご紹介で、名古屋大学大学院理学系研究科(…

ロバート・ノールズ Robert R. Knowles

ロバート・R・ノールズ(Robert R. Knowles, 19xx年x月x日(ニューヨーク生)-…

超若手科学者の発表会、サイエンス・インカレの優秀者インタビュー

大学生・高専生による自主研究の祭典、サイエンス・インカレの研究発表会に参加しました。発表会の様子と化…

Chem-Station Twitter

PAGE TOP