[スポンサーリンク]

F

福山アミン合成 Fukuyama Amine Synthesis

[スポンサーリンク]

アルコール、ハロゲン化合物→窒素化合物

概要

穏和な条件で二級アミンが合成できるきわめて強力な手法。

ニトロベンゼンスルホンアミド(ノシル(Ns)アミド)のプロトンは酸性度が高く、光延反応条件によりアルキル化することが可能である。
弱塩基・アルキルハライドを用いるアルキル化条件に伏すこともできる。

トルエンスルホニル(Ts)アミドなどでも同様の変換に伏すことは可能だが、Ns基の場合はチオールの求核攻撃によって容易に脱保護が行える。この点で脱保護の難しいTs基よりも優れる。

Ns基はアミンの保護と活性化の二役をこなす、次世代型保護基と言える。

基本文献

 

開発の歴史

福山透らによって1995年に開発された。ちなみに福山は1995年にライス大教授から東京大学へと移り、現在名古屋大学特任教授である。

福山透

福山透

 

反応機構

脱保護:Ns基はチオールの求核付加によりMeisenheimerコンプレックスを経由し、引き続き二酸化硫黄の脱離を伴って脱保護される。他のスルホン系保護基に比べ、脱保護が容易な点が特長である。
fukuyama_amine_2.gif

反応例

ニトロ2置換のDNs保護基も同様の手法に用いられる。Nsと区別して脱保護することも可能。
fukuyama_amine_3.gif
大環状アミンの合成にも用いることが出来る[1]。
fukuyama_amine_4.gif

実験手順

ノシル基の脱保護[2] fukuyama_amine_5.gif

攪拌子を備えた100mL二径フラスコに、窒素雰囲気下、チオフェノール(7.82mL, 76.5mmol)のアセトニトリル(20mL)溶液を調製する。溶液を氷冷し、10.9M水酸化カリウム水溶液(7.02mL,
76.5mmol)を10分かけて加える。5分攪拌後、氷浴を取り除き、N-(4-Methoxybenzyl)-N-(3-phenylpropyl)-2-nitrobenzenesulfonamide
(13.5g, 30.6mmol)のアセトニトリル(20mL)溶液を20分かけて加える。溶液を50℃にて40分過熱攪拌し、室温まで放冷する。水(80mL)で希釈し、ジクロロメタン(3×80mL)で抽出する。有機層を合わせ、飽和食塩水(80mL)で洗浄し、無水硫酸マグネシウムで乾燥させる。ろ過して減圧濃縮し、シリカゲルカラムクロマトグラフィで精製する。濃縮後得られた油状物質をジクロロメタン(120mL)に溶解させ、1M水酸化ナトリウム水溶液(80mL)、飽和食塩水(40mL)で洗浄し、無水硫酸マグネシウムで乾燥する。ろ過して濃縮、減圧蒸留にて精製(150℃,0.25mmHg)することで目的のアミンを無色油状物質として得る(6.98-7.08 g, 収率89-91%)。

 

実験のコツ・テクニック

 

参考文献

  1. Fujiwara, A.; Kan, T.; Fukuyama, T. Synlett 2000, 1667. DOI: 10.1055/s-2000-7950
  2. Kurosawa, W.; Kan, T.; Fukuyama, T. Org. Synth. 200279, 186. [PDF]

 

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. チロシン選択的タンパク質修飾反応 Tyr-Selective P…
  2. シャープレス不斉ジヒドロキシル化 Sharpless Asyem…
  3. リスト・バルバス アルドール反応 List-Barbas Ald…
  4. ペタシス試薬 Petasis Reagent
  5. アルキンの環化三量化反応 Cyclotrimerization …
  6. ハリース オゾン分解 Harries Ozonolysis
  7. 根岸カルボメタル化 Negishi Carbometalatio…
  8. トラウベ プリン合成 Traube Purin Synthesi…

注目情報

ピックアップ記事

  1. 米国もアトピー薬で警告 発がんで藤沢製品などに
  2. 第24回 化学の楽しさを伝える教育者 – Darren Hamilton教授
  3. アルキルラジカルをトリフルオロメチル化する銅錯体
  4. ランバーグ・バックランド転位 Ramberg-Backlund Rearrangement
  5. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2
  6. 有機合成化学協会誌2021年6月号:SGLT2阻害薬・シクロペンチルメチルエーテル・4-メチルテトラヒドロピラン・糖-1-リン酸・新規ホスホジエステラーゼ阻害薬
  7. 化学物質MOCAでがん、4人労災
  8. MIT、空気中から低濃度の二酸化炭素を除去できる新手法を開発
  9. 既存の石油設備を活用してCO2フリー水素を製造、ENEOSが実証へ
  10. 日本プロセス化学会2023ウィンターシンポジウム

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP