[スポンサーリンク]

odos 有機反応データベース

辻・トロスト反応 Tsuji-Trost Reaction

[スポンサーリンク]

 

概要

アリルアルコールから誘導されるアリルハライド/エステル/カーボネート/ホスホネートなどを基質とし、パラジウム(0)触媒存在下、さまざまな求核剤を置換反応により導入できる。通称Allylic
Alkylation。

基質の適用範囲が広く、穏和な条件で炭素ー炭素結合が合成できる極めて有用な方法である。

モリブデン、イリジウムなどの金属触媒も類似の反応を進行させるが、こちらは内部炭素で置換が起こり、多置換生成物を与える。

tsuji_trost_7.gif

基本文献

  • Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron. Lett. 1965, 4387. doi:10.1016/S0040-4039(00)71674-1
  • Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 197395, 292. DOI: 10.1021/ja00782a080
  • Tsuji, J.; Shimizu, I.; Minami, I.; Ohashi, Y.; Sugiura, T.; Takahashi, K. J. Org. Chem. 1985, 50, 1523. DOI: 10.1021/jo00209a032
  • Frost, C. G.; Howarth, J.; Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089. doi:10.1016/S0957-4166(00)82091-1
  • 辻二郎, 有機合成化学協会誌 1999, 57, 1036.

 

反応機構

まずパラジウム(0)に基質が酸化的付加し、π-(η3)-アリルパラジウム中間体を形成する。その後、パラジウムの逆面から求核剤が攻撃し、生成物が得られる。アリル位においては、通常不活性なエステルやカーボネートでも酸化的付加は容易に起きる。これは酸化的付加の前段階において、配位可能なオレフィンが近傍に存在するためである。

通常は酸化的付加および求核攻撃とも立体反転で進行するため、全体として二重反転、すなわち立体保持の生成物を与える。

しかしながらハード性の高い求核剤を用いた場合には、Pd上へのトランスメタル化→還元的脱離の経路で進行し、求核付加の段階が立体保持になる。この場合は全体として立体反転する。この場合にはリン配位子を加えずに反応を行うことが重要である。

置換は通常最も置換基(立体障害)の少ない炭素上で起こる。
tsuji_trost_2.gif
π-アリルパラジウムはσ-(η1)-アリルパラジウムを経由してcis/trans異性化する。この異性化速度は求核付加よりも速く、生成してくるオレフィンの立体化学に留意する必要がある。(環状アリルアルコールの場合にはこの異性化は起こらないので、基質としては比較的扱いやすい。)
tsuji_trost_3.gif

反応例

Baseを共存させておく事で、分枝型成績体を選択的に得る事が可能。[1] tsuji_trost_9.gif
Sordarinの合成[2]:分子内辻-Trost反応を用いるVicinal四級炭素の構築。
tsuji_trost_4.gif
Marcfortine B の合成[3]:トリメチレンメタン等価体をPd触媒によって発生させ、[3+2]付加を行っている。
tsuji_trost_5.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Dubovyk, I.; Watson, I. D. G.; Yudin, A. K. J. Am. Chem. Soc. 2007, 129, 14172. DOI: 10.1021/ja076659n 

[2] Chiba, Y.; Kitamura, M.; Narasaka, K. J. Am. Chem. Soc. 2006, 128, 6931. DOI: 10.1021/ja060408h

[3] Trost, B. M.; Cramer, N.; Bernsmann, H. J. Am. Chem. Soc. 2007, 129, 3086. DOI: 10.1021/ja070142u

 

関連反応

 

関連書籍

[amazonjs asin=”0124666159″ locale=”JP” title=”Handbook of Palladium-Catalysed Organic Reactions”][amazonjs asin=”0471315060″ locale=”JP” title=”Handbook of Organopalladium Chemistry for Organic Synthesis: Volume 1 and Volume 2″]

 

外部リンク

関連記事

  1. 水素化ホウ素亜鉛 Zinc Bodohydride
  2. モンサント酢酸合成プロセス Monsanto Process f…
  3. ウィッティヒ転位 Wittig Rearrangement
  4. エンインメタセシス Enyne Metathesis
  5. 相間移動触媒 Phase-Transfer Catalyst (…
  6. コニア エン反応 Conia–Ene Reaction
  7. 四酸化オスミウム Osmium Tetroxide (OsO4)…
  8. 重水素標識反応 Deuterium Labeling React…

注目情報

ピックアップ記事

  1. スルホンアミドからスルホンアミドを合成する
  2. レイモンド・ドウェク Raymond A. Dwek
  3. “Wakati Project” 低コストで農作物を保存する技術とは
  4. 有機合成化学協会誌2023年4月号:ビニルボロン酸・動的キラル高分子触媒・ホスホニウムイリド・マイクロ波特異効果・モレキュラーシーブ
  5. カール・ジェラッシ Carl Djerassi
  6. 軽くて強いだけじゃないナノマテリアル —セルロースナノファイバーの真価
  7. 松田 豊 Yutaka Matsuda
  8. TMSClを使ってチタンを再生!チタン触媒を用いたケトン合成
  9. 第一回ケムステVプレミアレクチャー「光化学のこれから ~ 未来を照らす光反応・光機能 ~」を開催します!
  10. NITEが化学品のSDS作成支援システムをNITE-Gmiccsにて運用開始

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP