[スポンサーリンク]

化学者のつぶやき

雷神にそっくり?ベンゼン環にカミナリ走る

 

ベンゼンテトラアニオン誘導体の合成に成功,芳香族化合物の理解 深まる.

 

日本を代表する絵画のひとつ、江戸時代の画家である俵屋宗達による代表的作品「風神雷神図屏風」。ふと思い起こして、見比べてみると、あら不思議。フェロセン太鼓にも見えるし、手足の指5本ずつだし、これはネットスラングで言うところの 完 全 に 一 致 というやつでは。そっくり!?

冗談はさておき。この「雷神分子仮名)」の胴体にあたる中央の炭素六員環にご注目。金属元素のイットリウムに挟まれて、よくよく考えてみると電荷がおもしろげなことになっています。テトラアニオン(四価陰イオン)になっており、数えてみるとパイ電子はちょうど10個です。10は4で割り切れないため、ヒュッケル則を満たすことになりますが、はてさて実際に作って調べてみると芳香族になるのでしょうか。

GREEN2013raijin5.png

ベンゼンテトラアニオン

ベンゼンテトラアニオンは芳香族性を持つのか、合成・単離・結晶構造解析の結果[1]はいかに?

イギリスの歴史的に有名な科学者、かのマイケル・ファラデーが、鯨油を化学変化させベンゼンを単離したのは1825年のこと。月日は流れ、それ以来ずっと、芳香族性(aromacity)は化学の広い分野にわたって基礎となる重要な概念のひとつでした。

実際、芳香族性の話題は、大学学部教育おそらく1年めの化学で登場する重要なトピックのひとつと言ってもよいでしょう。学ぶであろう内容のうち、パイ電子の個数が4で割って2余ることを要求するヒュッケル則は、芳香族性を議論するためのよく使われる指標であり、シクロペンタジエニルアニオンシクロヘプタチエニルカチオンなど、正負の電荷を帯びたイオンでもしっかりとあてはまります。

さて、雷神のようなかたちでイットリウムが配位した冒頭のベンゼンテトラアニオン誘導体。目をつけるべきところは、雷のように「電子が走っているか」にあります。ヒュッケル則が満たされていても、電子が非局在化して、炭素六員環の上をぐるぐる回っていなければ、芳香族性を持ちません。

 

ベンゼンテトラアニオンは芳香族性を持つのか

環のすべてが炭素原子でできた芳香族化合物のうち、ベンゼンテトラアニオンは2013年[1]以前まで単離の例がなく、そのため芳香族性を持つかどうか、ほとんど検討されていませんでした。最近になってフェロセンジアミド配位子を使うと金属元素が芳香族炭化水素をサンドイッチのように挟み込むことができると2011年に判明[2]し、この性質を足がかりにして研究が展開され、冒頭の、雷神のようなかたちの分子が合成されました[1]。結晶も得られて、立体構造も解かれています[1]。

イットリウム原子について核磁気共鳴(nuclear magnetic resonance; NMR)スペクトルを調べてみると、ベンゼン環に配位させていない状態で370ppm、ベンゼン環に配位させて雷神のようなかたちの分子にすると189ppmでした。この数値が示唆するところによると、期待どおりベンゼンテトラアニオンとイットリウム原子で相互作用しているようです。密度汎関数法(density functional theory; DFT)で量子力学計算した結果も合わせて、期待どおり芳香族性を持つだろうと推論されています[1]。

GREEN2013raijin7.png

イットリウム89(89Y)の化学シフト(chemical shift)値

分子の構造」とは、「分子のかたち」はもちろん、広い意味で「分子の運動する様子」や「電子の分布」をも含む概念です。これらひとの目ではそのまま見ることのできない「分子の個性」が、どうにか工夫して見えたとき、わたしたちは、この世界に存在する多種多様な物質が持つ性質それぞれを支える本当の姿に迫ることができます。さながら、自然法則をすべる神様が、ちょっとだけ振り返り、こちらにほほえんでくれる、わけです。

GREEN2013kaminari3.png

こちらは神様というより鬼?宇宙人?電撃嫁?

巧妙な方法でベンゼンテトラアニオンの性質を垣間見ることができて、芳香族化合物一般の理解はさらに深まりました。

 

参考文献

[1] “A six-carbon 10p-electron aromatic system supported by group 3 metals.” Huang W et al. Nature Communication 2013 DOI: 10.1038/ncomms2473

[2] “Scandium arene inverted-sandwich complexes supported by a ferrocene diamide ligand.” Huang W et al. J. Am. Chem. Soc. 2011 DOI: 10.1021/ja204304f

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. 最近の金事情
  2. 2015年化学生物総合管理学会春季討論集会
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑦(解答編…
  4. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  5. 標的指向、多様性指向合成を目指した反応
  6. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  7. BASFとはどんな会社?-1
  8. ハッピー・ハロウィーン・リアクション

コメント

  1. 雷神似かはさておき、玄人好みの?地味に凄い構造かと

  2. うーむ

  3. 雷神にそっくり?ベンゼン環にカミナリ走る – 化学者のつぶやき -Chem-Station-:

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 劣性遺伝子押さえ込む メンデルの法則仕組み解明
  2. アジリジンが拓く短工程有機合成
  3. 1,4-ジ(2-チエニル)-1,4-ブタンジオン:1,4-Di(2-thienyl)-1,4-butanedione
  4. ハウザー・クラウス環形成反応 Hauser-Kraus Annulation
  5. Jエナジーと三菱化が鹿島製油所内に石化製品生産設備を700億円で新設
  6. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チューリヒ校・Bode研より
  7. オキサリプラチン /oxaliplatin
  8. 第3回ITbM国際シンポジウム(ISTbM-3)、第11回平田アワード、第1回岡崎アワード
  9. J-STAGE新デザイン評価版公開 ― フィードバックを送ろう
  10. カルボニルトリス(トリフェニルホスフィン)ロジウム(I)ヒドリド:Carbonyltris(triphenylphosphine)rhodium(I) Hydride

注目記事

関連商品

注目情報

試薬検索:東京化成工業



注目情報

最新記事

銀イオンクロマトグラフィー

以前、カラムクロマトグラフィーの吸引型手法の一つ、DCVCについてご紹介致しました。前回は操作に…

ニセ試薬のサプライチェーン

偽造試薬の一大市場となっている中国。その製造・供給ルートには、近所の印刷店など、予想だにしない人々ま…

どっちをつかう?:adequateとappropriate

日本人学者の論文で形容詞「adequate」と「appropriate」が混同されることはしばしば見…

大麻から作られる医薬品がアメリカでオーファンドラッグとして認証へ

FDA(アメリカ食品医薬品局)*1 は、ジャマイカの科学者 Dr. Henry Lowe によって開…

ゾル-ゲル変化を自ら繰り返すアメーバのような液体の人工合成

第113回のスポットライトリサーチは、東京大学大学院工学系研究科博士後期課程2年の小野田 実真(おの…

化学産業を担う人々のための実践的研究開発と企業戦略

内容 世界市場において日本の国際競争力の低下傾向が続いており、製造業のシェアは年々低下、化学…

Chem-Station Twitter

PAGE TOP