[スポンサーリンク]

一般的な話題

香料:香りの化学3

[スポンサーリンク]

今日は匂い、香料と香料業界のお話です。香料とは何かについて基本的な話は、香料の化学1を、合成香料のについてその歴史・合成法・利用例については香料の化学2を参照ください。

香り

匂いは五感の一つであり、ヒトには390程度の嗅覚受容体(GPCR)が存在し空気中の物質を検知することができると考えられています。これら匂いの受容体、実は超高感度な検出器で、例えばユズノン[1]というケトンや一部のチオール類は10pptレベルで匂いを検知することができます。ちなみにこの10pptという濃度、25メートルプールに化合物を1滴を垂らした程度の濃度です。

YuzunoneTM

香料の区分

香料は大きく、合成香料天然香料に分けられます。

天然香料は水蒸気蒸留、溶剤抽出、圧搾などの方法により得られる香料で、価格、動植物の収穫量や品質に変動性があり、価格も不安定で高価になりがちです。例えば雄のジャコウジカから得られる天然香料muscone ((R)-3-methylcyclopentadecanone)は、その独特な芳香と希少性から昔から重宝されてきました。その有用な匂い成分を得るため、ジャコウジカは乱獲され、絶滅の危機に瀕してしまい、ワシントン条約により保護されることになりました。そのため、この天然香料成分の供給は合成により行われています。

合成香料は量、匂いなどの品質、価格を安定して供給することができるため、比較的低価格です。合成香料は主なもので500種類程度、マイナーなものまで含めると3000以上あり、現在では合成香料の製造が天然香料のそれを大きく上回っています。

また香料は用途別に、私たちが食べる食品の風味(食品香料、フレイバー)と香水やオーデコロンの芳香、洗剤の香りなどの(香粧品香料、フレグランス)の二つに大きく分けられます。これら二つの市場規模は世界的には同程度ですが、日本企業もっぱらフレーバーに重点化しています。

香料の会社

皆様、医薬品企業はよくご存知のことと思いますが、香料業界はいかがでしょうか? この業界、どうなっているかと調べてみますと、意外とヨーロッパの企業、スイスとフランスが健闘していることがわかります。やはり、香水の流行の先端はパリコレから来るのか、風呂に入らない人が多いから香水の需要が高くてこうなってしまったのか、よくわかりませんが、1位から5位はこんな感じです。(%は世界シェア)

1位、ジボダン (Givaudan), Geneva in Switzerland, 19%
世界最大の香料メーカー、スイス、チューリッヒ郊外に研究所があります。
2位、フィルメニッヒ (Firmenich), Geneva in Switzerland, 14%
株式非公開のオーナー企業。
3位、IFF (International Flavors and Fragrances), New Jersey in US, 12%
4位、シムライズ (Symrise) Holtzminden in Germany, 12%
1874年TiemannとHaarmannがバニリンの工業的な合成を始めたことに端を発し、2002年の合併により設立された香料会社。
5位、高砂香料, 日本, 5%
Ru-BINAP触媒を用いたメントールの工業プロセスで有名。

その他の香料会社として仏大手香料会社のV. Mane FilsやアメリカのSensient Technologiesなどが続き、日本には高砂の他、長谷川香料小川香料曽田香料などがあります。

香料化合物の特性

どんな化合物が香料になるのでしょうか? 一般的に香料は分子量100-300の揮発性物質で、炭素数では上限がおよそ20、化合物は親油性かつ水も溶け、嗅覚受容体に結合するものが多いとされています。

また香料は、API (Active Pharmaceutical Ingredients = 医薬品の原薬)やAgrochemicalに比べて芳香環を持つ分子やヘテロ原子を多数有する分子は少なく(ヘテロ原子を多数有する場合無臭になってしまう)、ほとんどの香料が炭素、水素、酸素で構成され、窒素や硫黄が含まれるものもあります。低分子だけあって光学活性な化合物の数は少なめですが、メントールのように、光学活性物質は光学異性体によって匂いが異なることがあります。

匂い嗅ぎガスクロ

これらの合成または抽出した香料の分析で役立つのが、匂い嗅ぎガスクロです。近年の分析機器の進歩にも関わらず、時には人の嗅覚の方が分析機器の検出器より高感度で、匂い嗅ぎガスクロは匂い分析に不可欠な手段とされています。この匂い(Olfactory)とMassのコンビネーションなどで化合物の同定などが可能です(GC-MS-O)。

余談ですが、通常私たちが感じる匂いは数十もしくは数百化合物の混合物であるため、すごく不快な匂いを有するものであってもそれをGC-MS-O分析してみると、実はいい匂いの物質も混じっているということも多々あります。もちろんその中にはとてつもなく臭い物質もあります。例)ショクダイオオコンニャクが放つ特異臭気成分の研究[2]

匂い嗅ぎガスクロ。出典(日立化成HPより)

化合物の組み合わせと香り

香料の化学で最も重要なのが、化合物の組み合わせです。香料は複数の化合物をある一定の割合で混ぜることにより、一つの化合物では得られない複雑な匂いを作り出すことができます。このようなブレンド技術は、調香師の確保(育成)とノウハウ(調合技術)の蓄積が決定的で、簡単には真似できません。

ちなみに、フランスなどにはこの調香師の専門の学校があり、調香師になるにはまず、2000種類を超える原料と香りを記憶し、数種類から10種類程度の香料のバランスを香りだけで再現する訓練を積み、その後10年程度経験を積むことで一人前になることができます。すごいですね。

香料の合成とプロセス

ところで、皆さんも揮発性物質の合成を行った時、意外と使える溶媒が少なく、揮発性なのでエバポしたらすぐに飛んで行ってしまい、構造は簡単なはずなのに、意外と手こずってしまったことはありませんか? 私も、揮発性化合物の合成をしていて高真空ポンプに繋いだらなくなったんですけど、どうしましょう? って言っている後輩を見たことがあります。(笑)

香料の製造ではその揮発性ゆえ、APIやAgrochemicalのように結晶化による精製はほとんど行われることがなく、精製はほとんど蒸留です。香料の難しいところとして、不純物プロファイルが製品の品質にもろに影響する場合があるということが挙げられます。特にあまり香りが強くない化合物は顕著で、安全性には全く問題ない0.1%の不純物で香りの質がおかしくなるといったこともあるようです。そのため、単離収率を10%削って、その0.1%の不純物を精密蒸留で除去するといったこともあるようです。

さらに製造においては、Agrochemicalほどコストを低く抑える必要はありませんが、APIほどコストがかかってしまうと売れなくなってしまうので、その中間のコストバランスが要求されます。一方で香料の合成は、酸素官能基など、合成の足がかりとなるヘテロ原子の数が少ないために、小さな分子でも短工程で効率的に合成しようと思うと案外難しく、合成プロセスの開発は化学者の腕が問われます。

香料業界

香料業界は合成もしくは単離した化合物をただ単に売るだけではなく、化合物を混ぜて売ることができるため、他業種からの参入障壁が高くなっています。

また業界全体として、香料化合物はフレイバーでは約3000種類、フレグランスでも同程度とかなり多くの種類の香料が使われているものの、マイナーな香料成分の場合、日本全体で年間1トンも使われない化合物も多くあります。モノによっては匂いがあまりにも強く年間1gもあれば、足りてしまう化合物もあるようです。そのためスケールメリットが生かしにくく(多品種少量生産)、ニッチな産業として安定して存在しているのではないかと思われます。

現在、医薬品の業界では自分が合成した化合物が上市される確率は非常に低いですが、香料の場合は自分が合成した化合物が市場で回る可能性が比較的高いと言われています。エバポですぐ飛んでしまう、臭う化合物の合成は大変ですが、香料業界もやりがいのある魅力的な業界ではないでしょうか? 今回はこの辺で。

参考文献

  1. Miyazawa, N.; Tomita, N.; Kurobayashi, K.; Nakanishi, K.; Ohkubo, Y.; Maeda, T.; Fujita, A.; J. Agric. Food Chem., 2009, 57, 1990–1996.  DOI : 10.1021/jf803257x
  2. Shirasu, M.;  Fujioka, K.; Kakishima, S.; Nagai, S.; Tomizawa, Y.; Tsukaya, H.; Murata, J.; Manome, Y.; Touhara, K.; Biosci. Biotechnol. Biochem., 2010, 74, 2550-2554. DOI: 10.1271/bbb.100692

関連書籍

関連リンク

Gakushi

投稿者の記事一覧

東京の大学で修士を修了後、インターンを挟み、スイスで博士課程の学生として働いていました。現在オーストリアでポスドクをしています。博士号は取れたものの、ハンドルネームは変えられないようなので、今後もGakushiで通します。

関連記事

  1. ヤモリの足のはなし ~吸盤ではない~
  2. マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方と…
  3. C–S結合を切って芳香族を非芳香族へ
  4. DNAナノ構造体が誘起・制御する液-液相分離
  5. 生合成を模倣した有機合成
  6. Dihydropyridazinone環構造を有する初の天然物 …
  7. 第8回慶應有機化学若手シンポジウム
  8. Excelでできる材料開発のためのデータ解析[超入門]-統計の基…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 緑膿菌の代謝産物をヒトの薬剤に
  2. 大麻複合物が乳がんの転移抑止効果―米医療チームが発見
  3. カガクをつなげるインターネット:サイエンスアゴラ2017
  4. 夏本番なのに「冷たい炭酸」危機?液炭・ドライアイスの需給不安膨らむ
  5. マンニッヒ反応 Mannich Reaction
  6. ペプチドのN末端でのピンポイント二重修飾反応を開発!
  7. 【書籍】機器分析ハンドブック1 有機・分光分析編
  8. 【ケムステSlackに訊いて見た④】化学系学生の意外な就職先?
  9. ゲームを研究に応用? タンパク質の構造計算ゲーム「Foldit」
  10. 最少の実験回数で高い予測精度を与える汎用的AI技術を開発 ~材料開発のDX:NIMS、旭化成、三菱ケミカル、三井化学、住友化学の水平連携で実現~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP