[スポンサーリンク]

化学者のつぶやき

すべてがFになる

炭素原子の周りすべてがFになったトリフルオロメチル基の画期的導入法

 

サイズは小さいわりに自己主張が極めて強いフッ素は、医薬品など薬剤開発の場面でキーとなる原子です。そのため、トリフルオロメチル基(-CF3)を穏和な条件で導入する反応には、大きな需要があります。メチル基(-CH3)のH 3つすべてがFになる、そんなデザインを可能にする画期的な反応が開発されたため、ここに紹介します。

本題へ入る前に、フッ素の特別さ、特異さについて、要点をいくつか確認しましょう。

 

小さくて個性的なフッ素原子には生命の進化の過程で取り残された未踏の可能性が眠っている

リード化合物から実際の医薬品へと、化学構造を改良する場合、分解されにくくすることは、ひとつの重要な指針です。とくに、シトクロムP450と呼ばれる酵素の一団がやっかいで、やたらと物質を酸化して別なものに変換したがります。このような場合、そう簡単に、生体内で変換されてしまったり切断されてしまったりしない結合に取りかえてしまえば、酵素による分解を妨げられるでしょう。

薬剤の標的は、酵素なり受容体なり輸送体なり、たいていの場合、生き物の体の中で機能するタンパク質です。薬剤の標的となるタンパク質の立体構造が解かれている場合、どうすれば薬剤とタンパク質がより強く結合して複合体を作るか、改良の余地が見えてきます。とくに、薬剤が結合する標的タンパク質のくぼみで、グルタミン酸アスパラギン酸などの酸性アミノ酸が多く負の電荷を帯びていたり、リジンアルギニンなどの塩基性アミノ酸が多く正の電荷を帯びていたり、といった場合は要チェックです。かたちをそのままに、化学構造をデザインし直すことで、より強く結合する化合物へ改良できるでしょう。

GREEN0132.png

ベンゼン・フルオロベンゼン・クロロベンゼン・トルエン・トリフルオロメチルベンゼンの静電ポテンシャルマップ

 

フッ素原子は、他のハロゲン原子と比べて、サイズが小さく、炭素との結合も切れにくく、強力に電子を引きつける能力があります。このような性質のため、分解されにくくしたい、標的タンパク質と強く相互作用させたいといった要望に、フッ素は応えることができます。

しかし、一筋縄の方法でフッ素は取り扱えません。大学学部レベルで使われる有機化学の教科書で、ハロゲン化合物の項目を見ても、大部分が割愛されているだけのことはあります。さすが、かつて単体フッ素の単離に挑んだ化学者を苦しめた経歴を持つかなりの曲者です。

そもそも、自然はフッ素の取り扱いが難しいからこそ避けてきたところがあります。生命誕生から数億年。フッ素を含む天然化合物[1]はごくわずかで、そのほとんどが構造も単純。多くの生命は、フッ素を含まない別の化合物で、さらなる高みを目指して進化を続け、機能に満足してきました。もしも仮に、フッ素化合物が簡単に生合成できるならば、すでに続々と単離されていてもよいはずです。

しかし、だからこそ、進化の過程で取り残された未踏の構造が、フッ素化合物にはあります。細胞の中で作れなくても、フラスコの中ならば作れる。不可能を可能に変える化学の挑戦は続きます。

とくに重要な技術が、芳香環にフッ素原子を置換して入れる方法です。有毒なモノフルオロ酢酸に代謝[2]される恐れがないなど、なぜ芳香環なのかについては、いくつか利点はあります。

フルオロベンゼンのように、ベンゼン環の上にフッ素原子を導入する方法については、ケムステ内ですでに記事がありますので、そちらをどうぞ。

(1)斬新な官能基変換を可能にするパラジウム触媒/アリールフッ素化合物の合成

“Formation of ArF from LPdAr(F): Catalytic Conversion of Aryl Triflates to Aryl Fluorides”

Science 2009  DOI: 10.1126/science.1178239

(2)芳香族フッ素化合物の新規汎用合成法

“Silver-Catalyzed Late-Stage Fluorination” 

J. Am. Chem. Soc. 2010  DOI: 10.1021/ja105834t

 

さて、フッ素化学の魅力に浸り、フッ素化合物合成法の重要さを確認したところで、そろそろ本題のC-H活性化によるフルオロメチル基の導入に戻りましょう。

 

炭素原子の周りすべてがFになる分子設計が可能に

創薬への応用を意識した場合、イチから合成経路を見直して最初からフッ素原子を入れる方法は現実的ではありません。なるべくエレガントに終盤でフッ素原子を入れたいところです。

すでに知られていた方法は、銅やパラジウムなど遷移金属触媒を用いた反応[3]です。この場合、あらかじめ塩素ヨウ素ボロン酸を、ベンゼン環の上に導入しておく必要があります。

GREEN0133.PNG

論文[4]より転載

薬剤候補分子について、ベンゼン環のまわりにある官能基へ影響を与えず、この前駆体を用意するには、たいてい並行して多段階の反応が必要になります。理想としては、一発でドンとトリフルオロメチル基を入れられたら素晴らしいことでしょう。MacMillanらはここにチャレンジングな研究課題を提示し、お得意の光レドックス触媒(参照「光レドックス触媒と有機分子触媒の協同作用」)で困難を解決してみせます[4]。

GREEN0134.PNG

論文[4]より転載

このトリフルオロメチル化には、1電子移動(single electron transfer; SET)によりラジカルを仲介して進む反応機構が提案されています。研究の当初は、フルオロメチルラジカル(.CF3)を供給するために、トリフルオロヨードメタン(CF3I)を用いていたそうですが、トリフルオロメタンスルホン酸塩化物(CF3SO2Cl)を用いることで、基質に幅広く対応できるようになりました。光は小型の省エネ蛍光電球で構わないようで、室温の穏やかな条件で反応が進みます。

GREEN135.PNG

論文[4]より転載

さらに、ベンゼンと同じタイプの単なる芳香環だけではなく、ヘテロ芳香環に対しても同様の反応でトリフルオロメチル基の導入に成功しています。例えば、核酸塩基のチミンメチルウラシル)を、高収率でトリフルオロメチル化できたことを報告しています。

 

創薬合成化学に、さらなる発展への期待がますます高まる報告でした。進化の過程で取り残された未踏のフッ素化合物に深く通じた分子の匠たちに、今後も注目です。

 

参考論文

[1] “Crystal structure and mechanism of a bacterial ?uorinating enzyme” Changjiang Dong et al. Nature 2004  DOI: 10.1038/nature02280

[2] “Kinesin Spindle Protein (KSP) Inhibitors ……Cancer” Christopher D. Cox et al. J. Med. Chem. 2008  DOI: 10.1021/jm800386y

[3] “The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides” Eun Jin Cho et al. Science 2010  DOI: 10.1126/science.1190524 他

[4] “Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis” David A. Nagib et al. Nature 2011  DOI: 10.1038/nature10647

[5] “Catalysis for fluorination and trifluoromethylation” Nature 2011 Review DOI: 10.1038/nature10108 

 

関連書籍

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. PACIFICHEM2010に参加してきました!②
  2. マンガン触媒による飽和炭化水素の直接アジド化
  3. 「炭素-炭素結合を切って組み替える合成」テキサス大学オースティン…
  4. SPring-8って何?(初級編)
  5. メチレン炭素での触媒的不斉C(sp3)-H活性化反応
  6. 口頭発表での緊張しない6つのヒント
  7. 化学のちからで抗体医薬を武装する
  8. 低投資で効率的な英語学習~有用な教材は身近にある!

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. イライアス・コーリー E. J. Corey
  2. 「サリドマイド」投与医師の3割が指針”違反”
  3. ポリメラーゼ連鎖反応 ぽりめらーぜれんさはんのう polymerase chain reaction, PCR
  4. 伯東、高機能高分子材料「デンドリマー」、製造期間10分の1に
  5. “マイクロプラスチック”が海をただよう その2
  6. 積水化学、工業用接着剤で米最大手と提携
  7. 万有製薬、つくば研究所を閉鎖
  8. ニコラウ祭り
  9. 2009年度日本学士院賞、化学では竜田教授が受賞
  10. 女性科学者の卵を支援―「ロレアル・ユネスコ女性科学者 日本奨励賞」 募集中

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

エッセイ「産業ポリマーと藝術ポリマーのあいだ」について

Tshozoです。先日Angewandte Chemie International Edition…

Chem-Station Twitter

PAGE TOP