[スポンサーリンク]

一般的な話題

究極のエネルギーキャリアきたる?!

究極のエネルギーキャリア、それは意外なところから登場したこの物質かもしれません(画像出典はこちら)。

Tshozoです。窒素固定につき最終的に書こうと思っていたテーマがあちこちから出だしたので速報としてご紹介します。窒素マニア、略して窒マニの私にとっては極めて重要性の高い中身なので、是非化学を生業とされる方々に広く知っていただきたいと思います。

まずは化学工業日報殿が書かれたこちらの記事をリンク先にてご覧ください。下記ロゴからもいけます。なお同ロゴは同社HPトップより拝借いたしました。

Amm_02

この記事の中盤にサラッと書いてますが、凄い内容を含んでいると思います。技術的要旨は下記3点です。

 

 1、アンモニアが使いやすいエネルギーキャリアになりうる

 2、やり方次第では燃やすことが出来、燃料に使える

 3、燃やしても排ガス中のCO2を含まない上、窒素酸化物も極めて少ない(無い?!)

アンモニアの歴史的経緯は以前記載した(こちらこちら)通りですが、このときHaber、Bosch達は「空気と石炭からパン(肥料)を作った」と言われていました。

Amm_04

Haber, Mittasch, Krauch, Bosch BASFの事業基礎を作ったメンバーたち

それと同様、今回のこの案件は記事に基づいたコンセプトが実現すれば、

 「太陽光(などの再生エネルギー)と空気と水から燃料を作ることができる」

という大きなインパクトを秘めている印象を受けます。

なお、工学院大学の雑賀教授がかなり以前から本件の検討を進めていましたのでご存知の方はいるかと思います。しかし2、3は知らない方が多いのではないでしょうか? 特に3ではイメージ上はNOxとかがガンガン出そうなので意外だと思いますが、現在車両排ガス中のNOx低減に同様の分子構造を持つ尿素が既に使用されている(尿素SCRシステム)のですから、確かに言われてみればNOxが増える理屈は無いのです。

Amm_03

パイオニアの一人 工学院大学 雑賀教授(工学院大学HPより

 で、この技術のインパクトは一体どこにあるのか。自分は3つあると思います。

Amm_05

理屈上はこの2つだけでエネルギーを出し入れできる
(右の式は1ステップではまだ誰も実現してないでしょうが・・・)

第一に、カーボンが一切介在しないこと。

第二に、理屈上は窒素(空気)と純水とエネルギーさえあればどこでも創り出せること。これは上の反応式からの帰結ですが(もちろんこの「ΔEinをどう供給するか」が重要な問題になるのもすぐ予想出来ることですが、その課題にどう立ち向かうべきかはまた次回以降に)。

第三に、貯蔵が簡易で大容量を貯められること。この記事を見て調べたところ、その貯蔵の簡易性により、安い金属タンク一つで他候補である電池などに比べかなり大量のエネルギーを貯めることができます(下図)。劇物であることが難点ですが、量産開始から約100年経っていて貯蔵・供給ノウハウが歴史上多く蓄積されていますので大きな問題にはなり難いのではないでしょうか。

Amm_06

LHVエネルギー密度マップ(こちらの資料に筆者がラフ計算して加筆・
同資料はIEA2009年資料より数値を引用したもの) 太矢印近傍がアンモニア

この3つのインパクトを全て持つエネルギーキャリアには他にはありません。唯一対抗馬としてはヒドラジンがありますが、変異原性(発癌性)があることからまず普及は困難でしょう。このことから、エネルギーさえ得られれば究極的なエネルギーキャリアになりうるものではないかと思います。

なお化学界においてはざっと調べたところ、本件と同様の構想を東京大学の西林准教授がこちらのWeb記事で述べています。西林准教授は以前から非金属での窒素固定法の発見や低温での触媒的アンモニア合成で成果を上げており、2011年に下記の成果でNature Chemistryへ論文掲載を果たしています。まだプリミティブなレベルとはいえ、ノーベル賞受賞者R. Schrockからも内容紹介を受ける大きな成果で、今後の関連研究の進展が期待されます。

 

Amm_08

窒素固定のパイオニア 西林仁昭准教授

Amm_07

常温常圧でアンモニア触媒合成に成功した触媒(こちらから引用)
Schrock-Yandulov触媒に比して活性が大きく改善

 ・・・というように色々期待は持てるのですが、このコンセプトの実現にはざっと考えるだけでも多数の問題が頭に浮かんでくると思います。エネルギー供給元、コスト、スケール・・・様々な課題はあるものの、筆者はこのトピックを引き続き扱っていく予定です。その中で、上記の多数の問題に対し『何が本当の課題になりそうなのか』ということを提示出来れば研究ネタとしても面白いと思いますので、今後もお付き合い頂ければうれしいです。

それでは今回はここまで。

【補足】本件は、「燃料>肥料≒食料」という構図を抱えていると考えています。この点ではバイオエタノールと同様であり、どのような位置付けで使用するのかを十分に議論せずに無闇に使用し出すと同じ轍を踏むことになりかねないなあ、というのが非常に気にかかるところです。

The following two tabs change content below.
Tshozo

Tshozo

化学のチカラが世界を変える、と信じるとあるメーカ勤務の開発さん。元々の専門は電気なんですけど。 クラウジウスとかファントホッフの名前に反応する珍種がいたらそれは私です。

関連記事

  1. 2012年Wolf化学賞はナノケミストリーのLieber博士,A…
  2. 視覚を制御する物質からヒントを得た異性化反応
  3. ノーベル賞化学者に会いに行こう!「リンダウ・ノーベル賞受賞者会議…
  4. クロスカップリング用Pd触媒 小ネタあれこれ
  5. 2010年ノーベル化学賞予想―トムソン・ロイター版
  6. で、その研究はなんの役に立つの?
  7. 海底にレアアース資源!ランタノイドは太平洋の夢を見るか
  8. 美術品保存と高分子

コメント

  • トラックバックは利用できません。

  • コメント (1)

  1. 究極のエネルギーキャリアきたる?!

注目情報

ピックアップ記事

  1. ディーン・トースト F. Dean Toste
  2. フリーデル・クラフツアルキル化 Friedel-Crafts Alkylation
  3. サリドマイドが骨髄腫治療薬として米国で承認
  4. SelectfluorR
  5. 第18回「化学の職人」を目指すー京都大学 笹森貴裕准教授
  6. 1日1本の「ニンジン」でガン予防!?――ニンジンの効能が見直される
  7. もし新元素に命名することになったら
  8. 触媒のチカラで不可能を可能に?二連続不斉四級炭素構築法の開発
  9. 四酸化ルテニウム Ruthenium Tetroxide (RuO4)
  10. ニュースタッフ参加

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

Chem-Station Twitter

PAGE TOP