[スポンサーリンク]

化学者のつぶやき

不安定炭化水素化合物[5]ラジアレンの合成と性質

 

ラジアレン(Radialene)は環状の共役炭化水素化合物で、シクロアルカンの全ての炭素にメチレンが置換した構造をもっています。

ラジアレン合成の歴史はおよそ50年前にはじまりました。1961年にヘキサエチリデンシクロヘキサン([6]ラジアレンがメチレンでなくエチリデン構造をとっている)が合成されたのです。それ以降[3]ラジアレン(1965年)、[4]ラジアレン(1965年)、[6]ラジアレン(1977)やそれらの誘導体が報告されています[1]

一方で、残った[5]ラジアレンはラジアレン類の中でも高い反応性を示すことから、はじめのラジアレン類の合成から40年以上経過した現在でも、その単離および同定には至っていませんでした。

しかしながら、最近オーストラリアのSherburnPaddon-Rowらによって、ついに[5]ラジアレンの合成が達成されました。

 

“[5]Radialene”

Mackay, E. G.; Newton, C. G.; Toombs-Ruane, H.; Lindeboom, E. J.; Fallon, T.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. J. Am. Chem. Soc.2015, 137, 14653. DOI: 10.1021/jacs.5b07445

 

鍵となる合成法はひとことで言うと「鉄によるジエン部位の安定化を利用する」こと。また、彼らは[5]ラジアレンが高い反応性を示す理由を量子化学計算により明らかにしましています。今回はこの報告について紹介したいと思います。

2015-12-11_15-34-03

 

合成戦略

Paddon-Rowらはまず始めに目的化合物である[5]ラジアレンの反応性を量子化学計算より見積もりました。

その結果[5]ラジアレンは、[3], [4], [6]ラジアレンと比較し自己Diels–Alder反応を起こしやすいことが示唆されました。これまで報告されてきたラジアレンは全て高温条件で脱離反応や転位反応を経て合成されていますが(図1左)[1]、Paddon-Rowらの計算結果から、従来の反応条件では[5]ラジアレンの合成は困難であると考えられます。

そこでSherburnは[5]ラジアレンを合成するために、鉄と錯形成し自己Diels–Alder反応を抑える合成する方法を試みたのです。

穏和な条件で可逆的に鉄を付け外しできるため、これはジエン部位の保護基として利用できることは既知です。彼らは、以前にデンドラレンを0価の鉄と錯形成させることで、自己Diels­–Alder反応を抑えられることを報告しています[2]。そこでSherburnは同様の方法を[5]ラジアレンの合成に応用しました(図1右)。

 

2015-12-11_15-35-07

図1 Reported synthetic methods for [n]radialene (left), protection of diene by iron (right).

合成経路

こうして、Sherburnらは全10段階で[5]ラジアレンの合成に成功しました。詳細な合成経路は次の通り(図2)。

2,3-ジクロロブタジエン(2)の逐次カップリングおよびカルボニル化により4を合成した。片方の鉄を除去したのち、TMSCH2Li付加、脱水脱シリル化、鉄による再保護を経て[5]ラジアレン鉄錯体8を得ました。8はX線により構造を確認しています。8の重アセトン溶液をNMRチューブ中で–78 °Cに冷やし、CAN(硝酸セリウムアンモニウム)を計12当量加え48時間反応させたところ、1H NMRで[5]ラジアレンが観測され、NMR収率は27%でした。

合成した[5]ラジアレンの半減期は–20 °Cで16分であり、二量化反応が非常に速いことが分かりました。

 

2015-12-11_15-36-09

図2 Synthesis of [5]radialene and X-ray structure of the intermediate.

[5]ラジアレンの反応性

ここで、1つ疑問が生じます。

「なぜ[5]ラジアレンの自己Diels–Alder反応が他のラジアレンと比べてはやいのか?」

ということです。

それを明らかにするために、彼らは各ラジアレンのdistortionエネルギーと二量化した際のinteractionエネルギーを求めました(図3)。

その結果[5]ラジアレンはほぼ平面構造をとり、協奏的にDiels–Alder反応を起こしやすい構造であることが分かりました。

同様に[3]、[4]ラジアレンも平面構造をとるが、エキソメチレン同士の距離が遠いため自己Diels–Alder反応が起こりにくい

また[6]ラジアレンはエキソメチレンの立体反発により非平面構造をとるため、Diels–Alder反応の遷移状態に至る前に平面状に構造変化する必要があり、高いエネルギーが必要になります(Figure 2)。

結果的に、[5]ラジアレンはラジアレンの中で最も高い反応性を示すと結論づけました。

2015-12-11_15-37-04

図3 Energy difference between [5]radialene and [6]radialene.

まとめ

このように、長年困難だった[5]ラジアレンの合成が達成されました。さらに著者らは何故[5]ラジアレンのみが合成できなかったのか、その理由を量子化学計算により明らかにしました。

5」の部分だけぽっかり穴の空いた”分子パズル”を今回の報告で埋めることができたことを純粋に賞賛するのはもちろん、[5]ラジアレンが自己Diels–Alder反応のみでなく、他の化合物に対してどのように反応するか等、今後も[5]ラジアレンの特性を生かした研究に期待したいと思います。

 

参考文献

  1. Hopf, H.; Maas, G. Angew. Chem., Int. Ed. 1992, 31, 931. DOI: 10.1002/anie.199209313
  2. Toombs-Ruane, H.; Osinski, N.; Fallon, T.; Wills, C.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. – Chem. Asian J. 2011, 6, 3243. DOI: 10.1002/asia.201100455

 

関連書籍

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 反応機構を書いてみよう!~電子の矢印講座・その1~
  2. 単一分子を検出可能な5色の高光度化学発光タンパク質の開発
  3. 向かい合わせになったフェノールが織りなす働き
  4. 化学物質でiPS細胞を作る
  5. 化学研究ライフハック: Evernoteで論文PDFを一元管理!…
  6. 【書籍】液晶の歴史
  7. 二丁拳銃をたずさえ帰ってきた魔弾の射手
  8. 薬学部6年制の現状と未来

コメント

  1. 「8の重アセトン溶液をNMRチューブ中で–78 °Cに冷やし、CANを計12当量加え48時間反応」「NMR収率は27%」「[5]ラジアレンの半減期は–20 °Cで16分」

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. ノーベル化学賞 のーべるかがくしょう Nobel Prize in Chemistry
  2. 山本嘉則 Yoshinori Yamamoto
  3. がん細胞をマルチカラーに光らせる
  4. 抗菌目薬あす発売 富山化学工業 国内初の小児適用
  5. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」
  6. 信越化学1四半期決算…自動車や電気向け好調で増収増益
  7. Cooking for Geeks 第2版 ――料理の科学と実践レシピ
  8. 2014年ケムステ記事ランキング
  9. サイエンスアゴラの魅力-食用昆虫科学研究会・「蟲ソムリエ」中の人に聞く
  10. ロバート・バーンズ・ウッドワード Robert Burns Woodward

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界

内容2004年にブレークしたグラフェンは,電子材料はじめさまざまな応用が期待される新素材の担…

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

Chem-Station Twitter

PAGE TOP