[スポンサーリンク]

化学者のつぶやき

アザジラクチンの全合成

[スポンサーリンク]

Synthesis of Azadirachtin: A Long but Successful Journey Veitch, G. E.; Beckmann, E.; Burke, B. J.; Boyer,  A.; Maslen, S. L.; Ley, S. V. Angew. Chem. Int. Ed. 2007, 46, 7629. DOI:10.1002/anie.200703027
A Relay Route for the Synthesis of Azadirachtin Veitch, G. E.; Beckmann, E.; Burke, B. j.; Boyer, A.; Ayats, C.; Ley, S. V. Angew. Chem. Int. Ed. 2007, 46, 7633. DOI:10.1002/anie.200703027

(ややいまさら感がありますが) ケンブリッジ大学・Steven Leyらによって先日達成された、アザジラクチンの全合成について紹介します。

冒頭の構造式を見てもらえれば分かりますが、縮環構造・高酸化数・16の不斉炭素(うち4級炭素が4つ)と、とんでもなく複雑な構造をしている化合物です。最終物は光やら酸素やらいろんなものに不安定だそうで、「これを合成しよう!」と思ったとしても、もはやどこら辺から手をつけて良いのかすら分かりません。2007年に全合成された天然物の中では、疑いなく最難化合物の一つといえるでしょう。

ともかくルートの収束性を高める戦略に基づけば、下のような結合で切る逆合成をして、フラグメント同士をくっつけるやり方がよさそうです。 ただし、この結合は、とてつもなく混み合った四置換炭素同士を結んでいます。Leyらも同様の逆合成をしていますが、やはり最も困難を極めたのは「どうやってこの炭素-炭素結合をうまく作るか?」、ということでした。実際ありとあらゆる方法を試しているようですが、どれもこれもうまくいかず相当な苦戦を強いられたようです。

唯一上手くいったやり方は、下図のようにプロパルギル位に脱離基を持つピランフラグメントを用いる方法です。反応点周りが立体的に空いていることが何にも増して重要だったようです。

 

azadirachtin2.gif

では、実際のルートを見てみましょう。デカリンフラグメントの基礎骨格は、分子内Diels-Alder反応およびアルドール型環化を用いて上手く構築しています。シリル基はDiels-Alder反応の選択性発現に重要であるとともに、後に玉尾-Fleming酸化によってヒドロキシル基を導入するための足がかりになっています。

azadirachtin3.gif

 いよいよフラグメントカップリングです。アルキル化によって結合を作ろうとしましたが、得られてきたものは、エノールの酸素原子上で反応が起こった化合物でした(このあたりからも一筋縄ではいかないことが見て取れると思います)。

 ともあれフラグメント間で結合が作れたので、これを足がかりとしたClaisen転位によって炭素-炭素結合形成を試みています。熱的にも反応がいったようですが、Tosteらによって開発されたAu(I)触媒を用いるプロパルギルClaisen転位(Saucy-Marbett転位)が有効だったようです。最新合成技術の発展がどれだけ凄いかを示す好例といえるでしょう。

 その後もかなりハードル高い変換が続きます。Barton-McCombie条件によってラジカル環化反応を行い右半分の炭素骨格構築に成功しています。続いて混み合った位置にエポキシ化を行っています。温度(100℃以上)・時間(7日間)・ラジカルスカベンジャー添加という突き詰めた条件になっており、ここ1ステップだけで気が遠くなる検討が重ねられていることが想像できます。これでDegradation Studiesで得られる化合物と同じものが得られ、あとは逆行ルートに従って合成を進め、アザジラクチンの全合成を完了しています。

azadirachtin4.gif

 40人以上の共同研究者、22年という長い年月をかけて達成された64段階の全合成ルートは、どのような価値をもたらすのでしょうか?これについてはほうぼうの雑誌で批評記事が掲載されており、必ずしも肯定的な意見ばかりでもないようです。

ともあれ、最先端の合成技術を結集してもこれほどまでに大変なルートになる現実を鑑みれば、現状の有機合成における課題をいくつも見いだせるように思います。少なくとも「縮環構造・高酸化数・連続不斉炭素を持つ化合物を実用合成可能なレベルには、合成技術の方が到達できていない」ということはいえそうです。

では、どうすれば効率よく合成できるようになるのか?はたまた、それは追い求め続けるべき課題なのか? ―――それを各々で判断し、考え、決められること、それが学術研究の持ちうる自由さです。

その自由さを謳歌しうる限り、研究者たちはどういう風に考え、有機合成はどう進展していくのか?全ての時代を通じて、それは興味深い思索となるでしょう。

 関連リンク

Azadirachtin (Wikipedia)

ニーム(インドセンダン)

アザジラクチン・22年目の陥落 (有機化学美術館・分館)

The Ley Group homepage ケンブリッジ大・レイ研究室のホームページ

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 熱や力で真っ二つ!キラルセルフソーティングで構築されるクロミック…
  2. 2009年イグノーベル賞決定!
  3. 材料開発の変革をリードするスタートアップのプロダクト開発ポジショ…
  4. 環状ビナフチルオリゴマーの大きさが円偏光の向きを変える
  5. 金属・ガラス・製紙・化学・土石製品業界の脱炭素化 〜合成、焼成、…
  6. DNAが絡まないためのループ
  7. 研究テーマ変更奮闘記 – PhD留学(前編)
  8. 化学工業で活躍する有機電解合成

注目情報

ピックアップ記事

  1. 「可視光アンテナ配位子」でサマリウム還元剤を触媒化
  2. 磁石でくっつく新しい分子模型が出資募集中
  3. 周期表を超えて~超原子の合成~
  4. ワインレブケトン合成 Weinreb ketone synthesis
  5. 高収率・高選択性―信頼性の限界はどこにある?
  6. クリスティーナ・ホワイト M. Christina White
  7. ケムステ版・ノーベル化学賞候補者リスト【2017年版】
  8. 光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!
  9. カーボンニュートラル材料とマテリアルズ・インフォマティクス活用で実現するサステナブル社会
  10. ステファン・ヘル Stefan W. Hell

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP