[スポンサーリンク]

chemglossary

抗体触媒 / Catalytic Antibody

触媒はそれ自身変化しないが、化学反応の仲立ちとなって、反応速度を速めたり遅らせたりする物質である。とくに生物の免疫機構によって生成される抗体が触媒として働くとき、それを抗体触媒(Catalytic Antibody)と呼称する[1]。現在ではAbzymeと呼ばれることもある。

歴史

1948年Linus Paulingは、 自らの「鍵と鍵穴」理論、すなわち「酵素は触媒する反応の遷移状態アナログに相補的な分子である」という仮説[2]を提示した。

これに沿う形で1969年Wjlliam P. Jenckshは、「反応の遷移状態アナ ログをハプテンと して得 られた抗体の結合部位は、酵素と同様に反応を加速する」とい う理論を提唱した[3]。しかし、モノクローナル抗体製造技術の未成熟さなどを背景に、この考え方は長らく進歩を見せなかった。

1986年にPeter SchultzRichard Lernerのグループにより、抗体が化学反応を触媒できることが世界で初めて示された[4]。

この報告を契機に、抗体触媒は幅広い分野の科学者の注目を集めた。

原理

上述の通り抗体触媒は、酵素と同様、反応遷移状態を安定化させる(反応の活性化エネルギーを下げる)ということが駆動原理となっている。

すなわち化学反応の遷移状態模倣分子をデザインし、それをハプテンとした抗原をマウスへ投与、モノクローナル抗体を免疫応答によってつくりだす。こうして得られた抗体が触媒として機能する。このハプテンとしては例えば、エステル加水分解反応に対してはリン酸などが汎用されている。

画像はこちらより引用

画像はこちらより引用

反応ごとに適切なハプテンをデザインできれば、原理的にはどのような化学反応でも対応する抗体触媒が製造可能なはずであるため、オーダーメイド人工触媒を生み出す一般手法になると当時は考えられた。

有機合成への利用

Barbas、Lernerらは、1995年にアルドール反応を触媒する抗体触媒を作製した[5]。代表的な抗体触媒38C2、33F12の結果を以下に示す。抗体とβジケトンから形成されるエナミンを遷移状態模倣として捉えている。

余談であるが、ここから得られた発想が、後のプロリン有機触媒という世界的ブレイクスルーに結びついている。

画像はこちらより引用

画像はこちらより引用

38C2が触媒するアルドール反応(画像はこちらより引用)

38C2が触媒するアルドール反応とその応用(画像はこちらより引用)

問題点

コンセプトは優れているが現実的に数多くの問題があるため、物質製造目的にはこれまでほとんど実用されていない。

  • 抗体は免疫応答を利用して製造されるため、スクリーニング・最適化に多くの時間がかかる
  • 大量の抗体を得ることが困難である
  • 抗体の分子量が大きいため、反応を行う際には基質に比して大量用いなければならない
  • 抗体が変性しない条件(通常は生理的条件)を越境した条件を使うことができない
  • 特定の反応を除き、触媒活性がさほど高くない

医薬応用を見据えた取り組み

近年の抗体医薬台頭の潮流を受け、抗体触媒概念は再注目を集める可能性がある。以下はコカインを加水分解して無毒化する抗体触媒のデザインである[6]。

catalytic_antibody_2

 

 (※以前より公開されていた記事を加筆修正し、ブログに移行したものです)

関連文献

  1. Review: (a) Shokat, K. M.; Shultz, P. G. Ann. Rev. Immunol. 1990, 8, 335. DOI: 10.1146/annurev.iy.08.040190.002003 (b) 池田昇司, Kim D. Janda, 有機合成化学協会誌, 1993, 51, 284. doi:10.5059/yukigoseikyokaishi.51.284 (c) Schultz, P. G.; Lerner, E. A. Science 1995, 269, 1835. DOI: 10.1126/science.7569920 (d)藤井 郁雄, 円谷 健, 化学と生物 1998, 36, 778. doi:10.1271/kagakutoseibutsu1962.36.778
  2. Pauling, L. Am. Sci. 194836, 51.
  3. Jencks, W. Catalysis in Chemistry andEnzymology, McGraw-Hill, New York , 1969, p.288
  4. (a) Pollack, S. J.; Jacobs, J. W.; Schultz, P. G. Science 19862341570–1573. DOI: 10.1126/science.3787262 (b) Tramontano, A.; Janda, K. D.; Lerner, R. A.  Science 19862341566–1570. DOI:10.1126/science.3787262
  5. (a) Wagner, J.; Lerner, R.; Barbas, C., III, Science 1995, 270, 1797. DOI: 10.1126/science.270.5243.1797 (b) Barbas,C., III,; Heine, A.; Zhong, G.; Hoffmann, T.; Gramatikova, S.; Bjornestedt, R.; List, B.; Anderson, J.; Stura, E.; Wilson, I.; Lerner, R. Science 1997, 278, 2085. DOI: 10.1126/science.278.5346.2085 (c) Hoffmann, T.; Z hong, G.; List, B.; Shabat, D.; Anderson, J.; Gramatikova, S.; Lerner, R.; Barbas, C., III,  J. Am. Chem. Soc. 1998, 120, 2768. DOI: 10.1021/ja973676b
  6. Deng, S. X.; de Prada, P.; Landry, D. W. J. Immunol. Methods, 2002269, 299. doi:10.1016/S0022-1759(02)00237-5

関連書籍

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 界面活性剤 / surface-active agent, su…
  2. 国連番号(UN番号)
  3. 抗体-薬物複合体 Antibody-Drug Conjugate…
  4. 元素戦略 Element Strategy
  5. メタンハイドレート めたんはいどれーと methane hydr…
  6. 光親和性標識 photoaffinity labeling (P…
  7. 有機EL organic electroluminescence…
  8. ソーレー帯 (Soret band) & Q帯 (Q …

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. リチウム二次電池における次世代電極材料の開発【終了】
  2. 秋山・寺田触媒 Akiyama-Terada Catalyst
  3. 芳香環シラノール
  4. フェルキン・アーン モデル Felkin-Anh Model
  5. ビッグデータが一変させる化学研究の未来像
  6. 目からウロコの熱伝導性組成物 設計指南
  7. ブラウザからの構造式検索で研究を加速しよう
  8. 雷神にそっくり?ベンゼン環にカミナリ走る
  9. アルコールのアルカンへの還元 Reduction from Alcohol to Alkane
  10. V字型分子が実現した固体状態の優れた光物性

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

Chem-Station Twitter

PAGE TOP