[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (5/最終回)

「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第4回までは、歴史的なマイルストーンとなった成果を紹介してきた。

最終回である第5回は、主として2000年~現在までに達成された、最先端の研究成果について紹介してみたい。これまで適用不可能だった反応剤を用いたり、基質一般性を格段に広げることを触媒の力で実現するというのが大まかな潮流となっている。

新しい触媒的エノラート生成法

エノラート生成は塩基触媒、もしくは前回取りあげたようなエナミン型有機触媒で通常達成される。しかし近年では脱プロトン化を経由しない、新しいタイプのエノラート生成法が検討候補に挙がっている。とりわけ塩基に弱い化合物(エノール化しやすいアルデヒドなど)へと適用性を広げたりなど、既存の枠では使用不可能だった基質へアルドール反応を拡張可能なコンセプトであり、反応の有用性をさらに高める可能性を持っている。

本項では、非脱プロトン化経路でのエノラート生成を「触媒的に」達成している例に絞って紹介してみたい[1]。

● 1,4-還元からのエノラート生成

不飽和カルボニル化合物を1,4-還元すれば、中間体としてエノラートが得られる。これをさらに別のカルボニル化合物へとアルドール付加させれば、炭素-炭素結合を構築できる。これがすなわち、還元的アルドール反応である。エノラートの前調製が不要なため、入手容易な試薬を用いて簡便に行えるなどのメリットがある。

ボストンカレッジのJ.P.Morkenらは、世界に先駆けて実用的な触媒的還元的不斉アルドール反応の開発に成功している[2]。

図1: Morkenらによる触媒的還元的不斉アルドール反応

図1: Morkenらによる触媒的還元的不斉アルドール反応

近年では他のグループによっても改良が進められ、ケトンをアクセプターとしたり、ヒドリドの代わりにアルキル基を1,4-付加させたりと、より多様性に富む手法へ発展がなされている。

● 脱炭酸を経由するエノラート生成

脱炭酸を経る機構で進む触媒的不斉アルドール反応が、ハーバード大学のM.D.Shairらによって報告された[3]。機構解析によれば、酸性度の高い活性メチレンがまず脱プロトン化を受けてアルデヒドへと付加し、その後に脱炭酸が起きるとされている。基質に制限はあるものの、こちらも強塩基を必要としないために穏和に進行し、また保護されていないアルコールなどにも影響を与えないという優れた特徴がある。

図2: Shairらによる脱炭酸型触媒的不斉アルドール反応

図2: Shairらによる脱炭酸型触媒的不斉アルドール反応

●アルキンへのボロン酸付加を経由するエノラート生成

ホウ素エノラートを得るための新しい考え方として、アルキンへのボロン酸付加を経由する方法がUniversity College LondonのT. D. Sheppardらによって提唱されている[4]。金触媒をもちいて穏和に生成でき、引き続くアルドール反応も良好に進行する。付加を分子内形式に縛る必要があるため、現状では一般性に富む方法とは言い難いが、まったく新しい考え方のエノラート生成法として注目に値する報告である。

図3: Sheppardらによるアルキンへの分子内ボロン酸付加→アルドール反応

図3: Sheppardらによるアルキンへの分子内ボロン酸付加→アルドール反応

● オレフィン異性化によるエノラート生成

University College LondonのW. B. Motherwellらは、オレフィンの触媒的異性化を経由してアリルアルコキシドから金属エノラートを生成させ、アルドール反応に伏すという方法論を報告している[5a, 5b]。この考え方の利点は、通常上手く生成させることが難しいアルデヒド由来のエノラートでも選択的に生じさせることができる点にある[5c]。

図4: Motherwellらによる異性化を介する触媒的エノラート生成→アルドール反応

図4: Motherwellらによる異性化を介する触媒的エノラート生成→アルドール反応

低反応性の基質からエノラートを生成させるには

上述の限られた例を除き、エノラート生成のためにはα位を脱プロトン化しなくてはならない。α位C-H結合の酸性度が高い基質(アルデヒドやケトン)を用いる条件は発展しているものの、α位C-H結合の酸性度が低い基質(エステルやアミドなど)の場合には強塩基が当量以上必要となってしまい、条件を穏和にするにも限度があると考えられてきた。そこで第4回で述べた「直接的アルドール反応」の考え方を、よりα位酸性度の低いドナー基質へと拡張すべく、現在でも様々な角度から検討がされている。

これまでのところ、ニトリル、チオアミド、アミド、カルボン酸などから触媒的にエノラートを生成し、C=X結合への求核付加へと応用する研究例が報告されている。以下の図にはアルドール反応へと適用された例を示す[5, 6]。いずれもカルボニルドナー側基質だけをいかにして活性化するかを考え抜き、用いる基質や元素の特性を十二分に理解して成された絶妙な触媒設計が鍵となっている。

図5 :アルキルニトリル[5]およびチオアミド[6]からの触媒的エノラート生成→不斉アルドール型反応

図5 :アルキルニトリルおよびチオアミドからの触媒的エノラート生成→不斉アルドール型反応

またこれらの化学に関連して、 C=N結合を対象とした触媒的エノラート付加(アミド[7]、エステル[8]、カルボン酸[9])や、 電子不足C=C結合を対象とした触媒的エノラート付加(アミド[10])も報告されている。

これらはいまだ適用制限も多く、求電子剤としてアルデヒド/ケトンが使えない系もある。こういったものは厳密にアルドール反応と呼べないことも多いが、いずれカルボニル化合物全般にも拡張されていく可能性は備わっている。

おわりに

以上、アルドール反応の歴史から先端について眺めてみた。概観であってもこの分量になるため、全てを精緻に記述することは不可能である。実際、分厚い本になるほどの研究例がすでに知られている。より深い内容については、関連書籍などにご自身で当たっていただきたい。

古典的な反応でありながら、これほどの研究が重ねられている反応は稀である。まだまだ発展の止まない化学で有り、有機合成という分野が目指す理想を、各時代ごとに象徴している化学反応だということが分かるだろう。「有機化学の王道」と呼ばれる存在であるのも頷ける。

またこのような重要な化学において、日本人化学者が要所要所でブレイクスルーに寄与しており、貢献度が非常に大きいことは特筆に値する。「有機化学は日本のお家芸」と言われるのも伊達では無い。

どんな化学でも、未来はどうなっているのかと、想像に耽るのは楽しいものである。一研究者としてアルドール反応のさらなる発展を夢見つつ、本稿の筆を置くことにしたい。

参考文献

  1. Sheppard, T. D. Synlett 2011, 1340. DOI: 10.1055/s-0030-1260570
  2. Taylor, S. J.; Duffey, M. O.; Morken, J. P. J. Am. Chem. Soc. 2000, 122, 4528. DOI: 10.1021/ja9944453
  3. (a) Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Aloise, A. D.; Shair, M. D. J. Am. Chem. Soc. 2005, 127, 7284. DOI: 10.1021/ja051759j (b) Fortner, K. C.; Shair, M. D. J. Am. Chem. Soc. 2007, 129, 1032. DOI: 10.1021/ja0673682 (c) Review: Wang, Z.-L. Adv. Synth. Catal. 2013, 355, 2745. DOI: 10.1002/adsc.201300375
  4. (a) Edwards, G. L.; Motherwell, W. B.; Powell, D. M.; Sandham, D. A. J. Chem. Soc., Chem. Commun. 1991, 1399. DOI: 10.1039/C39910001399 (b) Gazaard, L. G.; Motherwell, W. B.; Sandham, D. A. J. Chem. Soc. Perkin Trans. 1, 1999, 979. DOI: 10.1039/A901370I (c) Lin, L.; Yamamoto, K.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2012, 51, 10275. DOI: 10.1002/anie.201205680
  5. Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7, 3757. DOI: 10.1021/ol051423e
  6. (a) Iwata, M.; Yazaki, R.; Suzuki, Y.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 18244. DOI: 10.1021/ja909758e (b) Iwata, M.; Yazaki, R.; Chen, I.-H.; Sureshkumar, D.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2011, 133, 5554. DOI: 10.1021/ja200250p
  7. Kobayashi, S.; Kiyohara, H.; Yamaguchi, M. J. Am. Chem. Soc. 2011, 133, 708. DOI: 10.1021/ja108764d
  8. Yamashita, Y.; Suzuki, H.; Kobayashi, S. Org. Biomol. Chem. 2012, 10, 5750. DOI: 10.1039/c2ob25522g
  9. Morita, Y.; Yamamoto, T.; Nagai, H.; Shimizu, Y.; Kanai, M. J. Am. Chem. Soc. 2015, 137, 7075. DOI: 10.1021/jacs.5b04175
  10. Suzuki, H.; Sato, I.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2015, 137, 4336. DOI: 10.1021/jacs.5b01943
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…
  2. Reaxys Ph.D Prize 2014受賞者決定!
  3. Ns基とNos基とDNs基
  4. 被引用回数の多い科学論文top100
  5. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…
  6. 燃える化学の動画を集めてみました
  7. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  8. 「anti-マルコフニコフ型水和反応を室温で進行させる触媒」エー…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  2. ジブロモインジゴ dibromoindigo
  3. 日本国際賞―受賞化学者一覧
  4. カンブリア爆発の謎に新展開
  5. ノーベル受賞者、東北大が米から招請
  6. 天然有機化合物のNMRデータベース「CH-NMR-NP」
  7. 相次ぐ海外化学企業の合併
  8. 危険!DDT入りの蚊取り線香
  9. ナノ粒子の機能と応用 ?コロイダルシリカを中心に?【終了】
  10. ビタミンDで肺ガンの生存率が上がる?

注目記事

関連商品

注目情報

試薬検索:東京化成工業



注目情報

最新記事

神経変性疾患関連凝集タンパク質分解誘導剤の開発

第114回のスポットライトリサーチは、東京大学大学院薬学系研究科博士後期課程2年の山下 博子(やまし…

銀イオンクロマトグラフィー

以前、カラムクロマトグラフィーの吸引型手法の一つ、DCVCについてご紹介致しました。前回は操作に…

ニセ試薬のサプライチェーン

偽造試薬の一大市場となっている中国。その製造・供給ルートには、近所の印刷店など、予想だにしない人々ま…

どっちをつかう?:adequateとappropriate

日本人学者の論文で形容詞「adequate」と「appropriate」が混同されることはしばしば見…

大麻から作られる医薬品がアメリカでオーファンドラッグとして認証へ

FDA(アメリカ食品医薬品局)*1 は、ジャマイカの科学者 Dr. Henry Lowe によって開…

ゾル-ゲル変化を自ら繰り返すアメーバのような液体の人工合成

第113回のスポットライトリサーチは、東京大学大学院工学系研究科博士後期課程2年の小野田 実真(おの…

Chem-Station Twitter

PAGE TOP