[スポンサーリンク]

化学者のつぶやき

天然イミンにインスパイアされたペプチド大環状化反応

[スポンサーリンク]

スクリプス研究所・Phil S. Baranらは、天然に存在するペプチドのイミン環化過程にインスパイアされ、様々な構造を持つ大環状ペプチドを合成する手法を開発した。反応は水中で側鎖保護なしに進行する。生成したイミン(およびそれを還元したアミン)を足掛かりとし、機能性分子を結合させることもできる。

“Peptide Macrocyclization Inspired by Non-Ribosomal Imine Natural Products”
Malins, L. E.; deGruyiter, J. N.; Robbins, K. J.; Scola, P. M.; Eastgate, M. D.; Ghadiri, M. R.; Baran, P. S.* J. Am. Chem. Soc. 2017, 139, 5233. DOI: 10.1021/jacs.7b01624 (アイキャッチ画像は本論文より引用)

問題設定と解決した点

 分子量500~2000程度の中分子化合物は、タンパク-タンパク相互作用阻害などに代表される高難度創薬標的を狙える化合物として、近年需要が高まっている。中でもプロテアーゼ耐性が高く、膜透過性や薬物特性に優れる大環状ペプチドがとりわけ注目を集めている。

 Baranらは天然がつくり出す環状ペプチドを参考に、N末端アミンとC末端に導入したアルデヒドを直接環化させる方法によって、様々な大環状ペプチドへとアプローチする手法を開発した。原料はイミン体と平衡状態にあるが、これを適切な求核剤で捕捉することで平衡が生成物へと傾く(冒頭画像参照)。

技術と手法の肝

 非リボソームペプチド(non-ribosomal peptide)[1]は、高い構造多様性と様々な生物活性を持つことが知られている。その中には還元酵素経由でイミン環化を経るものが存在している。そのプロセスを参考にした本法で合成される環状ペプチドも、そのような優れた特性を秘める可能性を持つ。

冒頭論文より引用

 本法を実行するには、C末端にアルデヒドを有するペプチドを合成しなくてはならない。これはRinkアミドレジンを用いるFmoc固相合成法をアレンジすることで達成している。

主張の有効性検証

①環化反応条件の最適化

 環化反応は水中もしくは緩衝液中で進行する。最適濃度は1 mM。ペプチドの濃度を上げると分子間反応が進行したり、還元的アミノ化条件でアルデヒドが還元される副反応が起こる。原料のペプチドは-20℃で保管しても多量体を形成してしまう。しかしながらこれは平衡反応なので、1 mMの溶液にしてしばらく置いておくと解離し、問題なく後続の反応が進行するようになる。

②基質一般性

 Tyr, His, Ser, Asp, Arg, Gln, シスチン(Cys-Cys)等を含む5~10残基のペプチドに対し、ストレッカー型環化、還元的アミノ化環化がいずれも保護基フリーで進行した。Lysを含む基質であってもpHを調整してやれば、ほとんどN末のアミノ基が反応する。ただLys側鎖との反応も全く進行しないわけではなく、N末生成物との分離が難しい。Lysは保護したまま反応させるほうがベターではある。

適用基質の抜粋

③生体直交的な官能基導入

ストレッカー型反応では、13Cラベル化を簡単に行える。還元的アミノ化型反応では2級アミンが生成するので、そこを足掛かりとしてビオチン、アルキンタグの導入などが可能なことが実証されている。環化N末端のアミノ酸をCys、Ser、His、Trpなどにしておけばイミンが分子内でトラップされ、剛直な縮環構造に導くことも可能。

④アミノ酸配列が環化に与える影響

反応前と反応後のペプチドに対し温度可変NMRを取り、N-H結合の化学シフト推移から水素結合の度合を調べたところ、天然構造の非リボソームペプチドのほうが、人工的配列よりもペプチド内の水素結合が強く、また環化しやすいことが分かった。天然に存在する非リボソームペプチドは疎水性アミノ酸の含有率が多いため、疎水性相互作用も重要な役割を果たしていることが考察される。

コメント

  • 米製薬大手ブリストル・マイヤーズ・スクイブ(BMS)との共同研究である。ちなみにBMS社は2010年からペプチドリーム社と提携し、特殊環状ペプチド薬の臨床試験を昨年より開始している。

参考文献

  1. Schwarzer, D.; Finking, R.; Marahie, M. Nat. Prod. Rep. 2003, 20, 275. DOI: 10.1039/B111145K

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. エッセイ「産業ポリマーと藝術ポリマーのあいだ」について
  2. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  3. ポンコツ博士の海外奮闘録 〜コロナモラトリアム編〜
  4. 1次面接を突破するかどうかは最初の10分で決まる
  5. Carl Boschの人生 その8
  6. Macユーザーに朗報!ChemDrawとWordが相互貼付可能に…
  7. 有機合成化学協会の公式ページがリニューアル!!
  8. 引っ張ると頑丈になる高分子ゲル:可逆な伸長誘起結晶化による強靭性…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 3日やったらやめられない:独自配位子開発と応用
  2. ここまで進んだ次世代医薬品―ちょっと未来の薬の科学
  3. 高分子鎖の「伸長」と「結晶化」が進行する度合いを蛍光イメージングで同時並列的に追跡する手法を開発
  4. 出発原料から学ぶ「Design and Strategy in Organic Synthesis」
  5. スチュアート・ライス Stuart A. Rice
  6. 伯東、高機能高分子材料「デンドリマー」、製造期間10分の1に
  7. 研究室ですぐに使える 有機合成の定番レシピ
  8. グレッグ・フー Gregory C. Fu
  9. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  10. 未来の車は燃料電池車でも電気自動車でもなくアンモニア車に?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP