[スポンサーリンク]

化学者のつぶやき

室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系

[スポンサーリンク]

 プリンストン大学・Eric Sorensenらは、光駆動型水素原子移動(HAT)触媒-卑金属触媒ハイブリッド系への紫外光(UV)照射によって、不活性アルカンを原料とする水素放出反応を世界で初めて実現した。

“Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis”
Wet, J. G.; Huang, D.; Sorensen, E. J.* Nat. Commun. 2015, 6, 10093. doi:10.1038/ncomms10093

問題設定と解決した点

 アルケンは各種官能基化の足がかりとして有用であるが、アルカンからの触媒的脱水素[1]によって製造することは困難を極める。また、現行の水素製造法自体もそのエネルギー効率の問題から抜本的改善が求められている。

 従来型触媒系は簡単な基質(ヘテロ原子隣接位)を対象とするものがほとんどである。アルカンに対する実施例[2]も、Ir, Rh触媒に光照射を伴うものが存在するが、貴金属触媒機構に依存する本質のために高温が必要になる。一方で自然界に目を向けると、鉄desaturaseがHAT過程に依存していることから、その人工的な模倣は脱水素過程を実現する有効戦略の一つとなる[3]。しかしながら、当量の酸化剤が必要となり水素放出系にはならない。

 本研究では従来型貴金属脱水素触媒の鍵過程である「酸化的付加→βヒドリド脱離→還元的脱離からの水素放出」を2つのHAT過程に置換える発想に基づき、アルカンからの脱水素型水素放出を実現している。

技術や手法の肝

アルカンを標的とする前半の”Hard HAT”には強い触媒(BDE~100 kcal/mol)が必要だが、炭素ラジカルを標的とする後半の”easy HAT”は比較的容易である(BDE~50 kcal/mol)。

上記のHAT過程それぞれに適しつつ、互いにつぶし合わない触媒系の選択が必要になる。

前半部の問題=“Hard HAT”過程には、強力な既知UV-HAT触媒である[Bu4N][W10O24] (TBADT)を適用することで解決している。後半部の問題=水素発生に適する触媒には、貴金属回避という指針から、水素発生研究で汎用されており信頼性もあるコバロキシム触媒を選択している。

主張の有効性検証

反応条件の最適

シクロオクタンを基質として条件検討。TBADT・コバロキシム触媒(COPC)いずれかのみ、near-UV(322 nm=TBADTの吸収帯)照射なしでは反応が進行しない。この3パラメタが全て存在するときのみ23%収率(TON~15)で脱水素反応が進行する。アルカンの脱水素は吸熱過程だが、UV照射によりエネルギー収支は釣り合う。触媒量を増やすとTBAカチオンの分解(1-ブテン+Bu3N)が起き、収率向上に寄与しない。コバルト触媒種についても検討しており、COPCがベスト。水素の発生はGCで確認。

コバルト触媒の最適化(冒頭論文SIより引用)

基質一般性

アルカンは総じて難しいが、触媒使用量が少ないのでシクロオクタンの場合にTON~48を達成。シクロヘキサンの脱水素は、シクロヘキセンで停止し、ベンゼンまで行かない。アリルラジカルが安定化を受けているのでCOPC活性種(BDE=50.5 kcal/mol[4a])では逆にHATが行かないためだろうと考察されている。アルコールの脱水素反応も検討しており、おおむね収率はアルカンより高く出る(こちらは大して凄くないので省略)。このことからも、最初の”Hard HAT”過程が困難であることがうかがえる。

アルカンの脱水素反応・基質一般性

反応機構の議論

電気化学的な測定だけだと如何様にでも過程を記述できてしまうため、UV-Visスペクトルに解析を頼っている。これらデータに基づく長々とした議論がSI上にあるものの、conclusiveな点がさほど無いので詳細は割愛。

議論すべき点

  • UV照射が必要な点。HAT触媒の特性が制限を生み出している。特に金属触媒連関系では、UV照射はリガンドを解離させたり諸々意図しないことを引き起こす。エネルギー収支の面でも良くないため、実用面でも制限がある。TBADTと同等機能を実現できる可視光触媒系が開発できれば、この問題は解決される。
  • 基質によっては数%未満の収率であり、まだまだ効率が悪い。やはり触媒系は干渉し、お互いつぶし合ってるのではないだろうか。
  • 脱水素を起こす炭素の位置は選べない。精密有機合成に使うにはもう二ひねり三ひねり必要に思える。
  • コバロキシム錯体の作業仮説と水素放出メカニズムについては、現状controversialと論文中でも書かれるに留まっている。

次に読むべき論文は?

  • コバロキシム錯体からの水素発生過程を詳しく調べている諸研究[4]
  • コバロキシム錯体やビタミンB12を触媒として用いた有機合成の論文。Carreiraのダフマニジン合成[5]などは好例?
  • 可視光ハイブリッド触媒系で活性型C-H切断と水素放出を行っている研究[6]。

参考文献

  1. Review: Gunanathan, C.; Milstein, D. Science 2013, 341, 6143. DOI: 10.1126/science.1229712
  2. (a) Burk, M. J.; Crabtree, R. H.; McGrath, D. V. JCS Chem. Commun. 1985, 1829. DOI: 10.1039/C39850001829 (b) Nomura, K.; Saito, Y. JCS Chem. Commun. 1988, 161. DOI: 10.1039/C39880000161 (c) Sakakura, T.; Sodeyama, T.; Tokunaga, Y.; Tanaka, M. Chem. Lett. 1988, 263. doi: 10.1246/cl.1988.263 (d) Chowdhury, A. D.; Weding, N.; Julis, J.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 6477. DOI: 10.1002/anie.201402287
  3. Bigi, M. A.; Red, S. A.; White, M. C. Nat. Chem. 2011, 3, 216. doi:10.1038/nchem.967
  4. (a) Li, G.; Han, A.; Pulling, M. E.; Estes, D. P.; Norton, J. R. J. Am. Chem. Soc. 2012, 134, 14662. DOI: 10.1021/ja306037w (b) Estes, D. P.; Grills, D. C.; Norton, J. R. J. Am. Chem. Soc. 2014, 136, 17362. DOI: 10.1021/ja508200g (c) Lacy, D. C.; Roberts, G. M.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 4860. DOI: 10.1021/jacs.5b01838 (d) Kaeffere, N.; Chavarot-Kerlidou, M.; Artero, V. Acc. Chem. Res. 2015, 48, 1286. DOI: 10.1021/acs.accounts.5b00058 (e) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Acc. Chem. Res. 2009, 42, 1995. DOI: 10.1021/ar900253e
  5. Weiss, M. E.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 11501. DOI: 10.1002/anie.201104681
  6. Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204. DOI:10.1021/jacs.7b00253

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ケミストリ・ソングス【Part1】
  2. 目指せPlanar!反芳香族性NIR色素の開発
  3. 合成化学の”バイブル”を手に入れよう
  4. スポットライトリサーチムービー:動画であなたの研究を紹介します
  5. 東京理科大学みらい研究室にお邪魔してきました
  6. 【書籍】イシューからはじめよ~知的生産のシンプルな本質~
  7. ラウリマライドの全合成
  8. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「高分子材料を進化させる表面・界面制御の基礎」
  2. 乙種危険物取扱者・合格体験記~読者の皆さん編
  3. 製薬業界の研究開発費、増加へ
  4. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環合成・モノアシル酒石酸触媒・不斉ヒドロアリール化・機能性ポリペプチド
  5. 「遷移金属を用いてタンパク質を選択的に修飾する」ライス大学・Ball研より
  6. プロワイプ:実験室を安価できれいに!
  7. ADC薬 応用編:捨てられたきた天然物は宝の山?・タンパクも有機化学の領域に!
  8. ブラウザからの構造式検索で研究を加速しよう
  9. 第18回 出版業務が天職 – Catherine Goodman
  10. 第26回 有機化学(どうぐばこ)から飛び出す超分子(アプリケーション) – Sankaran Thayumanavan教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年3月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP